5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2024-11-30 05:01:36 +00:00
matterbridge/vendor/github.com/klauspost/compress/s2/encode_go.go

720 lines
17 KiB
Go
Raw Normal View History

//go:build !amd64 || appengine || !gc || noasm
// +build !amd64 appengine !gc noasm
package s2
import (
"bytes"
"math/bits"
)
const hasAmd64Asm = false
// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
//
// len(dst) >= MaxEncodedLen(len(src))
func encodeBlock(dst, src []byte) (d int) {
if len(src) < minNonLiteralBlockSize {
return 0
}
return encodeBlockGo(dst, src)
}
// encodeBlockBetter encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
//
// len(dst) >= MaxEncodedLen(len(src))
func encodeBlockBetter(dst, src []byte) (d int) {
return encodeBlockBetterGo(dst, src)
}
// encodeBlockBetter encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
//
// len(dst) >= MaxEncodedLen(len(src))
func encodeBlockBetterSnappy(dst, src []byte) (d int) {
return encodeBlockBetterSnappyGo(dst, src)
}
// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
//
// len(dst) >= MaxEncodedLen(len(src))
func encodeBlockSnappy(dst, src []byte) (d int) {
if len(src) < minNonLiteralBlockSize {
return 0
}
return encodeBlockSnappyGo(dst, src)
}
// emitLiteral writes a literal chunk and returns the number of bytes written.
//
// It assumes that:
//
// dst is long enough to hold the encoded bytes
// 0 <= len(lit) && len(lit) <= math.MaxUint32
func emitLiteral(dst, lit []byte) int {
if len(lit) == 0 {
return 0
}
const num = 63<<2 | tagLiteral
i, n := 0, uint(len(lit)-1)
switch {
case n < 60:
dst[0] = uint8(n)<<2 | tagLiteral
i = 1
case n < 1<<8:
dst[1] = uint8(n)
dst[0] = 60<<2 | tagLiteral
i = 2
case n < 1<<16:
dst[2] = uint8(n >> 8)
dst[1] = uint8(n)
dst[0] = 61<<2 | tagLiteral
i = 3
case n < 1<<24:
dst[3] = uint8(n >> 16)
dst[2] = uint8(n >> 8)
dst[1] = uint8(n)
dst[0] = 62<<2 | tagLiteral
i = 4
default:
dst[4] = uint8(n >> 24)
dst[3] = uint8(n >> 16)
dst[2] = uint8(n >> 8)
dst[1] = uint8(n)
dst[0] = 63<<2 | tagLiteral
i = 5
}
return i + copy(dst[i:], lit)
}
// emitRepeat writes a repeat chunk and returns the number of bytes written.
// Length must be at least 4 and < 1<<24
func emitRepeat(dst []byte, offset, length int) int {
// Repeat offset, make length cheaper
length -= 4
if length <= 4 {
dst[0] = uint8(length)<<2 | tagCopy1
dst[1] = 0
return 2
}
if length < 8 && offset < 2048 {
// Encode WITH offset
dst[1] = uint8(offset)
dst[0] = uint8(offset>>8)<<5 | uint8(length)<<2 | tagCopy1
return 2
}
if length < (1<<8)+4 {
length -= 4
dst[2] = uint8(length)
dst[1] = 0
dst[0] = 5<<2 | tagCopy1
return 3
}
if length < (1<<16)+(1<<8) {
length -= 1 << 8
dst[3] = uint8(length >> 8)
dst[2] = uint8(length >> 0)
dst[1] = 0
dst[0] = 6<<2 | tagCopy1
return 4
}
const maxRepeat = (1 << 24) - 1
length -= 1 << 16
left := 0
if length > maxRepeat {
left = length - maxRepeat + 4
length = maxRepeat - 4
}
dst[4] = uint8(length >> 16)
dst[3] = uint8(length >> 8)
dst[2] = uint8(length >> 0)
dst[1] = 0
dst[0] = 7<<2 | tagCopy1
if left > 0 {
return 5 + emitRepeat(dst[5:], offset, left)
}
return 5
}
// emitCopy writes a copy chunk and returns the number of bytes written.
//
// It assumes that:
//
// dst is long enough to hold the encoded bytes
// 1 <= offset && offset <= math.MaxUint32
// 4 <= length && length <= 1 << 24
func emitCopy(dst []byte, offset, length int) int {
if offset >= 65536 {
i := 0
if length > 64 {
// Emit a length 64 copy, encoded as 5 bytes.
dst[4] = uint8(offset >> 24)
dst[3] = uint8(offset >> 16)
dst[2] = uint8(offset >> 8)
dst[1] = uint8(offset)
dst[0] = 63<<2 | tagCopy4
length -= 64
if length >= 4 {
// Emit remaining as repeats
return 5 + emitRepeat(dst[5:], offset, length)
}
i = 5
}
if length == 0 {
return i
}
// Emit a copy, offset encoded as 4 bytes.
dst[i+0] = uint8(length-1)<<2 | tagCopy4
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
dst[i+3] = uint8(offset >> 16)
dst[i+4] = uint8(offset >> 24)
return i + 5
}
// Offset no more than 2 bytes.
if length > 64 {
2022-06-24 22:36:16 +00:00
off := 3
if offset < 2048 {
// emit 8 bytes as tagCopy1, rest as repeats.
dst[1] = uint8(offset)
dst[0] = uint8(offset>>8)<<5 | uint8(8-4)<<2 | tagCopy1
length -= 8
off = 2
} else {
// Emit a length 60 copy, encoded as 3 bytes.
// Emit remaining as repeat value (minimum 4 bytes).
dst[2] = uint8(offset >> 8)
dst[1] = uint8(offset)
dst[0] = 59<<2 | tagCopy2
length -= 60
}
// Emit remaining as repeats, at least 4 bytes remain.
2022-06-24 22:36:16 +00:00
return off + emitRepeat(dst[off:], offset, length)
}
if length >= 12 || offset >= 2048 {
// Emit the remaining copy, encoded as 3 bytes.
dst[2] = uint8(offset >> 8)
dst[1] = uint8(offset)
dst[0] = uint8(length-1)<<2 | tagCopy2
return 3
}
// Emit the remaining copy, encoded as 2 bytes.
dst[1] = uint8(offset)
dst[0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1
return 2
}
// emitCopyNoRepeat writes a copy chunk and returns the number of bytes written.
//
// It assumes that:
//
// dst is long enough to hold the encoded bytes
// 1 <= offset && offset <= math.MaxUint32
// 4 <= length && length <= 1 << 24
func emitCopyNoRepeat(dst []byte, offset, length int) int {
if offset >= 65536 {
i := 0
if length > 64 {
// Emit a length 64 copy, encoded as 5 bytes.
dst[4] = uint8(offset >> 24)
dst[3] = uint8(offset >> 16)
dst[2] = uint8(offset >> 8)
dst[1] = uint8(offset)
dst[0] = 63<<2 | tagCopy4
length -= 64
if length >= 4 {
// Emit remaining as repeats
return 5 + emitCopyNoRepeat(dst[5:], offset, length)
}
i = 5
}
if length == 0 {
return i
}
// Emit a copy, offset encoded as 4 bytes.
dst[i+0] = uint8(length-1)<<2 | tagCopy4
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
dst[i+3] = uint8(offset >> 16)
dst[i+4] = uint8(offset >> 24)
return i + 5
}
// Offset no more than 2 bytes.
if length > 64 {
// Emit a length 60 copy, encoded as 3 bytes.
// Emit remaining as repeat value (minimum 4 bytes).
dst[2] = uint8(offset >> 8)
dst[1] = uint8(offset)
dst[0] = 59<<2 | tagCopy2
length -= 60
// Emit remaining as repeats, at least 4 bytes remain.
return 3 + emitCopyNoRepeat(dst[3:], offset, length)
}
if length >= 12 || offset >= 2048 {
// Emit the remaining copy, encoded as 3 bytes.
dst[2] = uint8(offset >> 8)
dst[1] = uint8(offset)
dst[0] = uint8(length-1)<<2 | tagCopy2
return 3
}
// Emit the remaining copy, encoded as 2 bytes.
dst[1] = uint8(offset)
dst[0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1
return 2
}
// matchLen returns how many bytes match in a and b
//
// It assumes that:
//
// len(a) <= len(b)
func matchLen(a []byte, b []byte) int {
b = b[:len(a)]
var checked int
if len(a) > 4 {
// Try 4 bytes first
if diff := load32(a, 0) ^ load32(b, 0); diff != 0 {
return bits.TrailingZeros32(diff) >> 3
}
// Switch to 8 byte matching.
checked = 4
a = a[4:]
b = b[4:]
for len(a) >= 8 {
b = b[:len(a)]
if diff := load64(a, 0) ^ load64(b, 0); diff != 0 {
return checked + (bits.TrailingZeros64(diff) >> 3)
}
checked += 8
a = a[8:]
b = b[8:]
}
}
b = b[:len(a)]
for i := range a {
if a[i] != b[i] {
return int(i) + checked
}
}
return len(a) + checked
}
func calcBlockSize(src []byte) (d int) {
// Initialize the hash table.
const (
tableBits = 13
maxTableSize = 1 << tableBits
)
var table [maxTableSize]uint32
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := len(src) - inputMargin
// Bail if we can't compress to at least this.
dstLimit := len(src) - len(src)>>5 - 5
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := 0
// The encoded form must start with a literal, as there are no previous
// bytes to copy, so we start looking for hash matches at s == 1.
s := 1
cv := load64(src, s)
// We search for a repeat at -1, but don't output repeats when nextEmit == 0
repeat := 1
for {
candidate := 0
for {
// Next src position to check
nextS := s + (s-nextEmit)>>6 + 4
if nextS > sLimit {
goto emitRemainder
}
hash0 := hash6(cv, tableBits)
hash1 := hash6(cv>>8, tableBits)
candidate = int(table[hash0])
candidate2 := int(table[hash1])
table[hash0] = uint32(s)
table[hash1] = uint32(s + 1)
hash2 := hash6(cv>>16, tableBits)
// Check repeat at offset checkRep.
const checkRep = 1
if uint32(cv>>(checkRep*8)) == load32(src, s-repeat+checkRep) {
base := s + checkRep
// Extend back
for i := base - repeat; base > nextEmit && i > 0 && src[i-1] == src[base-1]; {
i--
base--
}
d += emitLiteralSize(src[nextEmit:base])
// Extend forward
candidate := s - repeat + 4 + checkRep
s += 4 + checkRep
for s <= sLimit {
if diff := load64(src, s) ^ load64(src, candidate); diff != 0 {
s += bits.TrailingZeros64(diff) >> 3
break
}
s += 8
candidate += 8
}
d += emitCopyNoRepeatSize(repeat, s-base)
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
cv = load64(src, s)
continue
}
if uint32(cv) == load32(src, candidate) {
break
}
candidate = int(table[hash2])
if uint32(cv>>8) == load32(src, candidate2) {
table[hash2] = uint32(s + 2)
candidate = candidate2
s++
break
}
table[hash2] = uint32(s + 2)
if uint32(cv>>16) == load32(src, candidate) {
s += 2
break
}
cv = load64(src, nextS)
s = nextS
}
// Extend backwards
for candidate > 0 && s > nextEmit && src[candidate-1] == src[s-1] {
candidate--
s--
}
// Bail if we exceed the maximum size.
if d+(s-nextEmit) > dstLimit {
return 0
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
d += emitLiteralSize(src[nextEmit:s])
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
base := s
repeat = base - candidate
// Extend the 4-byte match as long as possible.
s += 4
candidate += 4
for s <= len(src)-8 {
if diff := load64(src, s) ^ load64(src, candidate); diff != 0 {
s += bits.TrailingZeros64(diff) >> 3
break
}
s += 8
candidate += 8
}
d += emitCopyNoRepeatSize(repeat, s-base)
if false {
// Validate match.
a := src[base:s]
b := src[base-repeat : base-repeat+(s-base)]
if !bytes.Equal(a, b) {
panic("mismatch")
}
}
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
if d > dstLimit {
// Do we have space for more, if not bail.
return 0
}
// Check for an immediate match, otherwise start search at s+1
x := load64(src, s-2)
m2Hash := hash6(x, tableBits)
currHash := hash6(x>>16, tableBits)
candidate = int(table[currHash])
table[m2Hash] = uint32(s - 2)
table[currHash] = uint32(s)
if uint32(x>>16) != load32(src, candidate) {
cv = load64(src, s+1)
s++
break
}
}
}
emitRemainder:
if nextEmit < len(src) {
// Bail if we exceed the maximum size.
if d+len(src)-nextEmit > dstLimit {
return 0
}
d += emitLiteralSize(src[nextEmit:])
}
return d
}
func calcBlockSizeSmall(src []byte) (d int) {
// Initialize the hash table.
const (
tableBits = 9
maxTableSize = 1 << tableBits
)
var table [maxTableSize]uint32
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := len(src) - inputMargin
// Bail if we can't compress to at least this.
dstLimit := len(src) - len(src)>>5 - 5
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := 0
// The encoded form must start with a literal, as there are no previous
// bytes to copy, so we start looking for hash matches at s == 1.
s := 1
cv := load64(src, s)
// We search for a repeat at -1, but don't output repeats when nextEmit == 0
repeat := 1
for {
candidate := 0
for {
// Next src position to check
nextS := s + (s-nextEmit)>>6 + 4
if nextS > sLimit {
goto emitRemainder
}
hash0 := hash6(cv, tableBits)
hash1 := hash6(cv>>8, tableBits)
candidate = int(table[hash0])
candidate2 := int(table[hash1])
table[hash0] = uint32(s)
table[hash1] = uint32(s + 1)
hash2 := hash6(cv>>16, tableBits)
// Check repeat at offset checkRep.
const checkRep = 1
if uint32(cv>>(checkRep*8)) == load32(src, s-repeat+checkRep) {
base := s + checkRep
// Extend back
for i := base - repeat; base > nextEmit && i > 0 && src[i-1] == src[base-1]; {
i--
base--
}
d += emitLiteralSize(src[nextEmit:base])
// Extend forward
candidate := s - repeat + 4 + checkRep
s += 4 + checkRep
for s <= sLimit {
if diff := load64(src, s) ^ load64(src, candidate); diff != 0 {
s += bits.TrailingZeros64(diff) >> 3
break
}
s += 8
candidate += 8
}
d += emitCopyNoRepeatSize(repeat, s-base)
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
cv = load64(src, s)
continue
}
if uint32(cv) == load32(src, candidate) {
break
}
candidate = int(table[hash2])
if uint32(cv>>8) == load32(src, candidate2) {
table[hash2] = uint32(s + 2)
candidate = candidate2
s++
break
}
table[hash2] = uint32(s + 2)
if uint32(cv>>16) == load32(src, candidate) {
s += 2
break
}
cv = load64(src, nextS)
s = nextS
}
// Extend backwards
for candidate > 0 && s > nextEmit && src[candidate-1] == src[s-1] {
candidate--
s--
}
// Bail if we exceed the maximum size.
if d+(s-nextEmit) > dstLimit {
return 0
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
d += emitLiteralSize(src[nextEmit:s])
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
base := s
repeat = base - candidate
// Extend the 4-byte match as long as possible.
s += 4
candidate += 4
for s <= len(src)-8 {
if diff := load64(src, s) ^ load64(src, candidate); diff != 0 {
s += bits.TrailingZeros64(diff) >> 3
break
}
s += 8
candidate += 8
}
d += emitCopyNoRepeatSize(repeat, s-base)
if false {
// Validate match.
a := src[base:s]
b := src[base-repeat : base-repeat+(s-base)]
if !bytes.Equal(a, b) {
panic("mismatch")
}
}
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
if d > dstLimit {
// Do we have space for more, if not bail.
return 0
}
// Check for an immediate match, otherwise start search at s+1
x := load64(src, s-2)
m2Hash := hash6(x, tableBits)
currHash := hash6(x>>16, tableBits)
candidate = int(table[currHash])
table[m2Hash] = uint32(s - 2)
table[currHash] = uint32(s)
if uint32(x>>16) != load32(src, candidate) {
cv = load64(src, s+1)
s++
break
}
}
}
emitRemainder:
if nextEmit < len(src) {
// Bail if we exceed the maximum size.
if d+len(src)-nextEmit > dstLimit {
return 0
}
d += emitLiteralSize(src[nextEmit:])
}
return d
}
// emitLiteral writes a literal chunk and returns the number of bytes written.
//
// It assumes that:
//
// dst is long enough to hold the encoded bytes
// 0 <= len(lit) && len(lit) <= math.MaxUint32
func emitLiteralSize(lit []byte) int {
if len(lit) == 0 {
return 0
}
switch {
case len(lit) <= 60:
return len(lit) + 1
case len(lit) <= 1<<8:
return len(lit) + 2
case len(lit) <= 1<<16:
return len(lit) + 3
case len(lit) <= 1<<24:
return len(lit) + 4
default:
return len(lit) + 5
}
}
func cvtLZ4BlockAsm(dst []byte, src []byte) (uncompressed int, dstUsed int) {
panic("cvtLZ4BlockAsm should be unreachable")
}
func cvtLZ4BlockSnappyAsm(dst []byte, src []byte) (uncompressed int, dstUsed int) {
panic("cvtLZ4BlockSnappyAsm should be unreachable")
}