5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2024-11-14 17:50:26 +00:00
matterbridge/vendor/github.com/skip2/go-qrcode/encoder.go

487 lines
12 KiB
Go
Raw Normal View History

2019-02-21 19:28:13 +00:00
// go-qrcode
// Copyright 2014 Tom Harwood
package qrcode
import (
"errors"
"log"
bitset "github.com/skip2/go-qrcode/bitset"
)
// Data encoding.
//
// The main data portion of a QR Code consists of one or more segments of data.
// A segment consists of:
//
// - The segment Data Mode: numeric, alphanumeric, or byte.
// - The length of segment in bits.
// - Encoded data.
//
// For example, the string "123ZZ#!#!" may be represented as:
//
// [numeric, 3, "123"] [alphanumeric, 2, "ZZ"] [byte, 4, "#!#!"]
//
// Multiple data modes exist to minimise the size of encoded data. For example,
// 8-bit bytes require 8 bits to encode each, but base 10 numeric data can be
// encoded at a higher density of 3 numbers (e.g. 123) per 10 bits.
//
// Some data can be represented in multiple modes. Numeric data can be
// represented in all three modes, whereas alphanumeric data (e.g. 'A') can be
// represented in alphanumeric and byte mode.
//
// Starting a new segment (to use a different Data Mode) has a cost, the bits to
// state the new segment Data Mode and length. To minimise each QR Code's symbol
// size, an optimisation routine coalesces segment types where possible, to
// reduce the encoded data length.
//
// There are several other data modes available (e.g. Kanji mode) which are not
// implemented here.
// A segment encoding mode.
type dataMode uint8
const (
// Each dataMode is a subset of the subsequent dataMode:
// dataModeNone < dataModeNumeric < dataModeAlphanumeric < dataModeByte
//
// This ordering is important for determining which data modes a character can
// be encoded with. E.g. 'E' can be encoded in both dataModeAlphanumeric and
// dataModeByte.
dataModeNone dataMode = 1 << iota
dataModeNumeric
dataModeAlphanumeric
dataModeByte
)
// dataModeString returns d as a short printable string.
func dataModeString(d dataMode) string {
switch d {
case dataModeNone:
return "none"
case dataModeNumeric:
return "numeric"
case dataModeAlphanumeric:
return "alphanumeric"
case dataModeByte:
return "byte"
}
return "unknown"
}
type dataEncoderType uint8
const (
dataEncoderType1To9 dataEncoderType = iota
dataEncoderType10To26
dataEncoderType27To40
)
// segment is a single segment of data.
type segment struct {
// Data Mode (e.g. numeric).
dataMode dataMode
// segment data (e.g. "abc").
data []byte
}
// A dataEncoder encodes data for a particular QR Code version.
type dataEncoder struct {
// Minimum & maximum versions supported.
minVersion int
maxVersion int
// Mode indicator bit sequences.
numericModeIndicator *bitset.Bitset
alphanumericModeIndicator *bitset.Bitset
byteModeIndicator *bitset.Bitset
// Character count lengths.
numNumericCharCountBits int
numAlphanumericCharCountBits int
numByteCharCountBits int
// The raw input data.
data []byte
// The data classified into unoptimised segments.
actual []segment
// The data classified into optimised segments.
optimised []segment
}
// newDataEncoder constructs a dataEncoder.
func newDataEncoder(t dataEncoderType) *dataEncoder {
d := &dataEncoder{}
switch t {
case dataEncoderType1To9:
d = &dataEncoder{
minVersion: 1,
maxVersion: 9,
numericModeIndicator: bitset.New(b0, b0, b0, b1),
alphanumericModeIndicator: bitset.New(b0, b0, b1, b0),
byteModeIndicator: bitset.New(b0, b1, b0, b0),
numNumericCharCountBits: 10,
numAlphanumericCharCountBits: 9,
numByteCharCountBits: 8,
}
case dataEncoderType10To26:
d = &dataEncoder{
minVersion: 10,
maxVersion: 26,
numericModeIndicator: bitset.New(b0, b0, b0, b1),
alphanumericModeIndicator: bitset.New(b0, b0, b1, b0),
byteModeIndicator: bitset.New(b0, b1, b0, b0),
numNumericCharCountBits: 12,
numAlphanumericCharCountBits: 11,
numByteCharCountBits: 16,
}
case dataEncoderType27To40:
d = &dataEncoder{
minVersion: 27,
maxVersion: 40,
numericModeIndicator: bitset.New(b0, b0, b0, b1),
alphanumericModeIndicator: bitset.New(b0, b0, b1, b0),
byteModeIndicator: bitset.New(b0, b1, b0, b0),
numNumericCharCountBits: 14,
numAlphanumericCharCountBits: 13,
numByteCharCountBits: 16,
}
default:
log.Panic("Unknown dataEncoderType")
}
return d
}
// encode data as one or more segments and return the encoded data.
//
// The returned data does not include the terminator bit sequence.
func (d *dataEncoder) encode(data []byte) (*bitset.Bitset, error) {
d.data = data
d.actual = nil
d.optimised = nil
if len(data) == 0 {
return nil, errors.New("no data to encode")
}
// Classify data into unoptimised segments.
2021-06-16 19:00:49 +00:00
highestRequiredMode := d.classifyDataModes()
2019-02-21 19:28:13 +00:00
// Optimise segments.
err := d.optimiseDataModes()
if err != nil {
return nil, err
}
2021-06-16 19:00:49 +00:00
// Check if a single byte encoded segment would be more efficient.
optimizedLength := 0
for _, s := range d.optimised {
length, err := d.encodedLength(s.dataMode, len(s.data))
if err != nil {
return nil, err
}
optimizedLength += length
}
singleByteSegmentLength, err := d.encodedLength(highestRequiredMode, len(d.data))
if err != nil {
return nil, err
}
if singleByteSegmentLength <= optimizedLength {
d.optimised = []segment{segment{dataMode: highestRequiredMode, data: d.data}}
}
2019-02-21 19:28:13 +00:00
// Encode data.
encoded := bitset.New()
for _, s := range d.optimised {
d.encodeDataRaw(s.data, s.dataMode, encoded)
}
return encoded, nil
}
// classifyDataModes classifies the raw data into unoptimised segments.
// e.g. "123ZZ#!#!" =>
// [numeric, 3, "123"] [alphanumeric, 2, "ZZ"] [byte, 4, "#!#!"].
2021-06-16 19:00:49 +00:00
//
// Returns the highest data mode needed to encode the data. e.g. for a mixed
// numeric/alphanumeric input, the highest is alphanumeric.
//
// dataModeNone < dataModeNumeric < dataModeAlphanumeric < dataModeByte
func (d *dataEncoder) classifyDataModes() dataMode {
2019-02-21 19:28:13 +00:00
var start int
mode := dataModeNone
2021-06-16 19:00:49 +00:00
highestRequiredMode := mode
2019-02-21 19:28:13 +00:00
for i, v := range d.data {
newMode := dataModeNone
switch {
case v >= 0x30 && v <= 0x39:
newMode = dataModeNumeric
case v == 0x20 || v == 0x24 || v == 0x25 || v == 0x2a || v == 0x2b || v ==
0x2d || v == 0x2e || v == 0x2f || v == 0x3a || (v >= 0x41 && v <= 0x5a):
newMode = dataModeAlphanumeric
default:
newMode = dataModeByte
}
if newMode != mode {
if i > 0 {
d.actual = append(d.actual, segment{dataMode: mode, data: d.data[start:i]})
start = i
}
mode = newMode
}
2021-06-16 19:00:49 +00:00
if newMode > highestRequiredMode {
highestRequiredMode = newMode
}
2019-02-21 19:28:13 +00:00
}
d.actual = append(d.actual, segment{dataMode: mode, data: d.data[start:len(d.data)]})
2021-06-16 19:00:49 +00:00
return highestRequiredMode
2019-02-21 19:28:13 +00:00
}
// optimiseDataModes optimises the list of segments to reduce the overall output
// encoded data length.
//
// The algorithm coalesces adjacent segments. segments are only coalesced when
// the Data Modes are compatible, and when the coalesced segment has a shorter
// encoded length than separate segments.
//
// Multiple segments may be coalesced. For example a string of alternating
// alphanumeric/numeric segments ANANANANA can be optimised to just A.
func (d *dataEncoder) optimiseDataModes() error {
for i := 0; i < len(d.actual); {
mode := d.actual[i].dataMode
numChars := len(d.actual[i].data)
j := i + 1
for j < len(d.actual) {
nextNumChars := len(d.actual[j].data)
nextMode := d.actual[j].dataMode
if nextMode > mode {
break
}
coalescedLength, err := d.encodedLength(mode, numChars+nextNumChars)
if err != nil {
return err
}
seperateLength1, err := d.encodedLength(mode, numChars)
if err != nil {
return err
}
seperateLength2, err := d.encodedLength(nextMode, nextNumChars)
if err != nil {
return err
}
if coalescedLength < seperateLength1+seperateLength2 {
j++
numChars += nextNumChars
} else {
break
}
}
optimised := segment{dataMode: mode,
data: make([]byte, 0, numChars)}
for k := i; k < j; k++ {
optimised.data = append(optimised.data, d.actual[k].data...)
}
d.optimised = append(d.optimised, optimised)
i = j
}
return nil
}
// encodeDataRaw encodes data in dataMode. The encoded data is appended to
// encoded.
func (d *dataEncoder) encodeDataRaw(data []byte, dataMode dataMode, encoded *bitset.Bitset) {
modeIndicator := d.modeIndicator(dataMode)
charCountBits := d.charCountBits(dataMode)
// Append mode indicator.
encoded.Append(modeIndicator)
// Append character count.
encoded.AppendUint32(uint32(len(data)), charCountBits)
// Append data.
switch dataMode {
case dataModeNumeric:
for i := 0; i < len(data); i += 3 {
charsRemaining := len(data) - i
var value uint32
bitsUsed := 1
for j := 0; j < charsRemaining && j < 3; j++ {
value *= 10
value += uint32(data[i+j] - 0x30)
bitsUsed += 3
}
encoded.AppendUint32(value, bitsUsed)
}
case dataModeAlphanumeric:
for i := 0; i < len(data); i += 2 {
charsRemaining := len(data) - i
var value uint32
for j := 0; j < charsRemaining && j < 2; j++ {
value *= 45
value += encodeAlphanumericCharacter(data[i+j])
}
bitsUsed := 6
if charsRemaining > 1 {
bitsUsed = 11
}
encoded.AppendUint32(value, bitsUsed)
}
case dataModeByte:
for _, b := range data {
encoded.AppendByte(b, 8)
}
}
}
// modeIndicator returns the segment header bits for a segment of type dataMode.
func (d *dataEncoder) modeIndicator(dataMode dataMode) *bitset.Bitset {
switch dataMode {
case dataModeNumeric:
return d.numericModeIndicator
case dataModeAlphanumeric:
return d.alphanumericModeIndicator
case dataModeByte:
return d.byteModeIndicator
default:
log.Panic("Unknown data mode")
}
return nil
}
// charCountBits returns the number of bits used to encode the length of a data
// segment of type dataMode.
func (d *dataEncoder) charCountBits(dataMode dataMode) int {
switch dataMode {
case dataModeNumeric:
return d.numNumericCharCountBits
case dataModeAlphanumeric:
return d.numAlphanumericCharCountBits
case dataModeByte:
return d.numByteCharCountBits
default:
log.Panic("Unknown data mode")
}
return 0
}
// encodedLength returns the number of bits required to encode n symbols in
// dataMode.
//
// The number of bits required is affected by:
// - QR code type - Mode Indicator length.
// - Data mode - number of bits used to represent data length.
// - Data mode - how the data is encoded.
// - Number of symbols encoded.
//
// An error is returned if the mode is not supported, or the length requested is
// too long to be represented.
func (d *dataEncoder) encodedLength(dataMode dataMode, n int) (int, error) {
modeIndicator := d.modeIndicator(dataMode)
charCountBits := d.charCountBits(dataMode)
if modeIndicator == nil {
return 0, errors.New("mode not supported")
}
maxLength := (1 << uint8(charCountBits)) - 1
if n > maxLength {
return 0, errors.New("length too long to be represented")
}
length := modeIndicator.Len() + charCountBits
switch dataMode {
case dataModeNumeric:
length += 10 * (n / 3)
if n%3 != 0 {
length += 1 + 3*(n%3)
}
case dataModeAlphanumeric:
length += 11 * (n / 2)
length += 6 * (n % 2)
case dataModeByte:
length += 8 * n
}
return length, nil
}
// encodeAlphanumericChar returns the QR Code encoded value of v.
//
// v must be a QR Code defined alphanumeric character: 0-9, A-Z, SP, $%*+-./ or
// :. The characters are mapped to values in the range 0-44 respectively.
func encodeAlphanumericCharacter(v byte) uint32 {
c := uint32(v)
switch {
case c >= '0' && c <= '9':
// 0-9 encoded as 0-9.
return c - '0'
case c >= 'A' && c <= 'Z':
// A-Z encoded as 10-35.
return c - 'A' + 10
case c == ' ':
return 36
case c == '$':
return 37
case c == '%':
return 38
case c == '*':
return 39
case c == '+':
return 40
case c == '-':
return 41
case c == '.':
return 42
case c == '/':
return 43
case c == ':':
return 44
default:
log.Panicf("encodeAlphanumericCharacter() with non alphanumeric char %v.", v)
}
return 0
}