5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2024-12-10 00:35:49 +00:00
matterbridge/vendor/github.com/google/gops/internal/obj/arm/asm5.go

2847 lines
68 KiB
Go
Raw Normal View History

2017-03-23 22:28:55 +00:00
// Inferno utils/5l/span.c
// https://bitbucket.org/inferno-os/inferno-os/src/default/utils/5l/span.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package arm
import (
"fmt"
"log"
"math"
"sort"
"github.com/google/gops/internal/obj"
)
type Optab struct {
as obj.As
a1 uint8
a2 int8
a3 uint8
type_ uint8
size int8
param int16
flag int8
pcrelsiz uint8
}
type Opcross [32][2][32]uint8
const (
LFROM = 1 << 0
LTO = 1 << 1
LPOOL = 1 << 2
LPCREL = 1 << 3
)
var optab = []Optab{
/* struct Optab:
OPCODE, from, prog->reg, to, type,size,param,flag */
{obj.ATEXT, C_ADDR, C_NONE, C_TEXTSIZE, 0, 0, 0, 0, 0},
{AADD, C_REG, C_REG, C_REG, 1, 4, 0, 0, 0},
{AADD, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0},
{AMOVW, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0},
{AMVN, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0},
{ACMP, C_REG, C_REG, C_NONE, 1, 4, 0, 0, 0},
{AADD, C_RCON, C_REG, C_REG, 2, 4, 0, 0, 0},
{AADD, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0},
{AMOVW, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0},
{AMVN, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0},
{ACMP, C_RCON, C_REG, C_NONE, 2, 4, 0, 0, 0},
{AADD, C_SHIFT, C_REG, C_REG, 3, 4, 0, 0, 0},
{AADD, C_SHIFT, C_NONE, C_REG, 3, 4, 0, 0, 0},
{AMVN, C_SHIFT, C_NONE, C_REG, 3, 4, 0, 0, 0},
{ACMP, C_SHIFT, C_REG, C_NONE, 3, 4, 0, 0, 0},
{AMOVW, C_RACON, C_NONE, C_REG, 4, 4, REGSP, 0, 0},
{AB, C_NONE, C_NONE, C_SBRA, 5, 4, 0, LPOOL, 0},
{ABL, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0},
{ABX, C_NONE, C_NONE, C_SBRA, 74, 20, 0, 0, 0},
{ABEQ, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0},
{ABEQ, C_RCON, C_NONE, C_SBRA, 5, 4, 0, 0, 0}, // prediction hinted form, hint ignored
{AB, C_NONE, C_NONE, C_ROREG, 6, 4, 0, LPOOL, 0},
{ABL, C_NONE, C_NONE, C_ROREG, 7, 4, 0, 0, 0},
{ABL, C_REG, C_NONE, C_ROREG, 7, 4, 0, 0, 0},
{ABX, C_NONE, C_NONE, C_ROREG, 75, 12, 0, 0, 0},
{ABXRET, C_NONE, C_NONE, C_ROREG, 76, 4, 0, 0, 0},
{ASLL, C_RCON, C_REG, C_REG, 8, 4, 0, 0, 0},
{ASLL, C_RCON, C_NONE, C_REG, 8, 4, 0, 0, 0},
{ASLL, C_REG, C_NONE, C_REG, 9, 4, 0, 0, 0},
{ASLL, C_REG, C_REG, C_REG, 9, 4, 0, 0, 0},
{ASWI, C_NONE, C_NONE, C_NONE, 10, 4, 0, 0, 0},
{ASWI, C_NONE, C_NONE, C_LOREG, 10, 4, 0, 0, 0},
{ASWI, C_NONE, C_NONE, C_LCON, 10, 4, 0, 0, 0},
{AWORD, C_NONE, C_NONE, C_LCON, 11, 4, 0, 0, 0},
{AWORD, C_NONE, C_NONE, C_LCONADDR, 11, 4, 0, 0, 0},
{AWORD, C_NONE, C_NONE, C_ADDR, 11, 4, 0, 0, 0},
{AWORD, C_NONE, C_NONE, C_TLS_LE, 103, 4, 0, 0, 0},
{AWORD, C_NONE, C_NONE, C_TLS_IE, 104, 4, 0, 0, 0},
{AMOVW, C_NCON, C_NONE, C_REG, 12, 4, 0, 0, 0},
{AMOVW, C_LCON, C_NONE, C_REG, 12, 4, 0, LFROM, 0},
{AMOVW, C_LCONADDR, C_NONE, C_REG, 12, 4, 0, LFROM | LPCREL, 4},
{AADD, C_NCON, C_REG, C_REG, 13, 8, 0, 0, 0},
{AADD, C_NCON, C_NONE, C_REG, 13, 8, 0, 0, 0},
{AMVN, C_NCON, C_NONE, C_REG, 13, 8, 0, 0, 0},
{ACMP, C_NCON, C_REG, C_NONE, 13, 8, 0, 0, 0},
{AADD, C_LCON, C_REG, C_REG, 13, 8, 0, LFROM, 0},
{AADD, C_LCON, C_NONE, C_REG, 13, 8, 0, LFROM, 0},
{AMVN, C_LCON, C_NONE, C_REG, 13, 8, 0, LFROM, 0},
{ACMP, C_LCON, C_REG, C_NONE, 13, 8, 0, LFROM, 0},
{AMOVB, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0},
{AMOVBS, C_REG, C_NONE, C_REG, 14, 8, 0, 0, 0},
{AMOVBU, C_REG, C_NONE, C_REG, 58, 4, 0, 0, 0},
{AMOVH, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0},
{AMOVHS, C_REG, C_NONE, C_REG, 14, 8, 0, 0, 0},
{AMOVHU, C_REG, C_NONE, C_REG, 14, 8, 0, 0, 0},
{AMUL, C_REG, C_REG, C_REG, 15, 4, 0, 0, 0},
{AMUL, C_REG, C_NONE, C_REG, 15, 4, 0, 0, 0},
{ADIV, C_REG, C_REG, C_REG, 16, 4, 0, 0, 0},
{ADIV, C_REG, C_NONE, C_REG, 16, 4, 0, 0, 0},
{AMULL, C_REG, C_REG, C_REGREG, 17, 4, 0, 0, 0},
{AMULA, C_REG, C_REG, C_REGREG2, 17, 4, 0, 0, 0},
{AMOVW, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0},
{AMOVW, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0},
{AMOVB, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0},
{AMOVB, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0},
{AMOVBS, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0},
{AMOVBS, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0},
{AMOVBU, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0},
{AMOVBU, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0},
{AMOVW, C_SAUTO, C_NONE, C_REG, 21, 4, REGSP, 0, 0},
{AMOVW, C_SOREG, C_NONE, C_REG, 21, 4, 0, 0, 0},
{AMOVBU, C_SAUTO, C_NONE, C_REG, 21, 4, REGSP, 0, 0},
{AMOVBU, C_SOREG, C_NONE, C_REG, 21, 4, 0, 0, 0},
{AMOVW, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0},
{AMOVW, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0},
{AMOVW, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4},
{AMOVB, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0},
{AMOVB, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0},
{AMOVB, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4},
{AMOVBS, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0},
{AMOVBS, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0},
{AMOVBS, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4},
{AMOVBU, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0},
{AMOVBU, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0},
{AMOVBU, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4},
{AMOVW, C_TLS_LE, C_NONE, C_REG, 101, 4, 0, LFROM, 0},
{AMOVW, C_TLS_IE, C_NONE, C_REG, 102, 8, 0, LFROM, 0},
{AMOVW, C_LAUTO, C_NONE, C_REG, 31, 8, REGSP, LFROM, 0},
{AMOVW, C_LOREG, C_NONE, C_REG, 31, 8, 0, LFROM, 0},
{AMOVW, C_ADDR, C_NONE, C_REG, 65, 8, 0, LFROM | LPCREL, 4},
{AMOVBU, C_LAUTO, C_NONE, C_REG, 31, 8, REGSP, LFROM, 0},
{AMOVBU, C_LOREG, C_NONE, C_REG, 31, 8, 0, LFROM, 0},
{AMOVBU, C_ADDR, C_NONE, C_REG, 65, 8, 0, LFROM | LPCREL, 4},
{AMOVW, C_LACON, C_NONE, C_REG, 34, 8, REGSP, LFROM, 0},
{AMOVW, C_PSR, C_NONE, C_REG, 35, 4, 0, 0, 0},
{AMOVW, C_REG, C_NONE, C_PSR, 36, 4, 0, 0, 0},
{AMOVW, C_RCON, C_NONE, C_PSR, 37, 4, 0, 0, 0},
{AMOVM, C_REGLIST, C_NONE, C_SOREG, 38, 4, 0, 0, 0},
{AMOVM, C_SOREG, C_NONE, C_REGLIST, 39, 4, 0, 0, 0},
{ASWPW, C_SOREG, C_REG, C_REG, 40, 4, 0, 0, 0},
{ARFE, C_NONE, C_NONE, C_NONE, 41, 4, 0, 0, 0},
{AMOVF, C_FREG, C_NONE, C_FAUTO, 50, 4, REGSP, 0, 0},
{AMOVF, C_FREG, C_NONE, C_FOREG, 50, 4, 0, 0, 0},
{AMOVF, C_FAUTO, C_NONE, C_FREG, 51, 4, REGSP, 0, 0},
{AMOVF, C_FOREG, C_NONE, C_FREG, 51, 4, 0, 0, 0},
{AMOVF, C_FREG, C_NONE, C_LAUTO, 52, 12, REGSP, LTO, 0},
{AMOVF, C_FREG, C_NONE, C_LOREG, 52, 12, 0, LTO, 0},
{AMOVF, C_LAUTO, C_NONE, C_FREG, 53, 12, REGSP, LFROM, 0},
{AMOVF, C_LOREG, C_NONE, C_FREG, 53, 12, 0, LFROM, 0},
{AMOVF, C_FREG, C_NONE, C_ADDR, 68, 8, 0, LTO | LPCREL, 4},
{AMOVF, C_ADDR, C_NONE, C_FREG, 69, 8, 0, LFROM | LPCREL, 4},
{AADDF, C_FREG, C_NONE, C_FREG, 54, 4, 0, 0, 0},
{AADDF, C_FREG, C_REG, C_FREG, 54, 4, 0, 0, 0},
{AMOVF, C_FREG, C_NONE, C_FREG, 54, 4, 0, 0, 0},
{AMOVW, C_REG, C_NONE, C_FCR, 56, 4, 0, 0, 0},
{AMOVW, C_FCR, C_NONE, C_REG, 57, 4, 0, 0, 0},
{AMOVW, C_SHIFT, C_NONE, C_REG, 59, 4, 0, 0, 0},
{AMOVBU, C_SHIFT, C_NONE, C_REG, 59, 4, 0, 0, 0},
{AMOVB, C_SHIFT, C_NONE, C_REG, 60, 4, 0, 0, 0},
{AMOVBS, C_SHIFT, C_NONE, C_REG, 60, 4, 0, 0, 0},
{AMOVW, C_REG, C_NONE, C_SHIFT, 61, 4, 0, 0, 0},
{AMOVB, C_REG, C_NONE, C_SHIFT, 61, 4, 0, 0, 0},
{AMOVBS, C_REG, C_NONE, C_SHIFT, 61, 4, 0, 0, 0},
{AMOVBU, C_REG, C_NONE, C_SHIFT, 61, 4, 0, 0, 0},
{AMOVH, C_REG, C_NONE, C_HAUTO, 70, 4, REGSP, 0, 0},
{AMOVH, C_REG, C_NONE, C_HOREG, 70, 4, 0, 0, 0},
{AMOVHS, C_REG, C_NONE, C_HAUTO, 70, 4, REGSP, 0, 0},
{AMOVHS, C_REG, C_NONE, C_HOREG, 70, 4, 0, 0, 0},
{AMOVHU, C_REG, C_NONE, C_HAUTO, 70, 4, REGSP, 0, 0},
{AMOVHU, C_REG, C_NONE, C_HOREG, 70, 4, 0, 0, 0},
{AMOVB, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0},
{AMOVB, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0},
{AMOVBS, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0},
{AMOVBS, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0},
{AMOVH, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0},
{AMOVH, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0},
{AMOVHS, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0},
{AMOVHS, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0},
{AMOVHU, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0},
{AMOVHU, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0},
{AMOVH, C_REG, C_NONE, C_LAUTO, 72, 8, REGSP, LTO, 0},
{AMOVH, C_REG, C_NONE, C_LOREG, 72, 8, 0, LTO, 0},
{AMOVH, C_REG, C_NONE, C_ADDR, 94, 8, 0, LTO | LPCREL, 4},
{AMOVHS, C_REG, C_NONE, C_LAUTO, 72, 8, REGSP, LTO, 0},
{AMOVHS, C_REG, C_NONE, C_LOREG, 72, 8, 0, LTO, 0},
{AMOVHS, C_REG, C_NONE, C_ADDR, 94, 8, 0, LTO | LPCREL, 4},
{AMOVHU, C_REG, C_NONE, C_LAUTO, 72, 8, REGSP, LTO, 0},
{AMOVHU, C_REG, C_NONE, C_LOREG, 72, 8, 0, LTO, 0},
{AMOVHU, C_REG, C_NONE, C_ADDR, 94, 8, 0, LTO | LPCREL, 4},
{AMOVB, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0},
{AMOVB, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0},
{AMOVB, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4},
{AMOVBS, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0},
{AMOVBS, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0},
{AMOVBS, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4},
{AMOVH, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0},
{AMOVH, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0},
{AMOVH, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4},
{AMOVHS, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0},
{AMOVHS, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0},
{AMOVHS, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4},
{AMOVHU, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0},
{AMOVHU, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0},
{AMOVHU, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4},
{ALDREX, C_SOREG, C_NONE, C_REG, 77, 4, 0, 0, 0},
{ASTREX, C_SOREG, C_REG, C_REG, 78, 4, 0, 0, 0},
{AMOVF, C_ZFCON, C_NONE, C_FREG, 80, 8, 0, 0, 0},
{AMOVF, C_SFCON, C_NONE, C_FREG, 81, 4, 0, 0, 0},
{ACMPF, C_FREG, C_REG, C_NONE, 82, 8, 0, 0, 0},
{ACMPF, C_FREG, C_NONE, C_NONE, 83, 8, 0, 0, 0},
{AMOVFW, C_FREG, C_NONE, C_FREG, 84, 4, 0, 0, 0},
{AMOVWF, C_FREG, C_NONE, C_FREG, 85, 4, 0, 0, 0},
{AMOVFW, C_FREG, C_NONE, C_REG, 86, 8, 0, 0, 0},
{AMOVWF, C_REG, C_NONE, C_FREG, 87, 8, 0, 0, 0},
{AMOVW, C_REG, C_NONE, C_FREG, 88, 4, 0, 0, 0},
{AMOVW, C_FREG, C_NONE, C_REG, 89, 4, 0, 0, 0},
{ATST, C_REG, C_NONE, C_NONE, 90, 4, 0, 0, 0},
{ALDREXD, C_SOREG, C_NONE, C_REG, 91, 4, 0, 0, 0},
{ASTREXD, C_SOREG, C_REG, C_REG, 92, 4, 0, 0, 0},
{APLD, C_SOREG, C_NONE, C_NONE, 95, 4, 0, 0, 0},
{obj.AUNDEF, C_NONE, C_NONE, C_NONE, 96, 4, 0, 0, 0},
{ACLZ, C_REG, C_NONE, C_REG, 97, 4, 0, 0, 0},
{AMULWT, C_REG, C_REG, C_REG, 98, 4, 0, 0, 0},
{AMULAWT, C_REG, C_REG, C_REGREG2, 99, 4, 0, 0, 0},
{obj.AUSEFIELD, C_ADDR, C_NONE, C_NONE, 0, 0, 0, 0, 0},
{obj.APCDATA, C_LCON, C_NONE, C_LCON, 0, 0, 0, 0, 0},
{obj.AFUNCDATA, C_LCON, C_NONE, C_ADDR, 0, 0, 0, 0, 0},
{obj.ANOP, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0, 0},
{obj.ADUFFZERO, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0}, // same as ABL
{obj.ADUFFCOPY, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0}, // same as ABL
{ADATABUNDLE, C_NONE, C_NONE, C_NONE, 100, 4, 0, 0, 0},
{ADATABUNDLEEND, C_NONE, C_NONE, C_NONE, 100, 0, 0, 0, 0},
{obj.AXXX, C_NONE, C_NONE, C_NONE, 0, 4, 0, 0, 0},
}
var pool struct {
start uint32
size uint32
extra uint32
}
var oprange [ALAST & obj.AMask][]Optab
var xcmp [C_GOK + 1][C_GOK + 1]bool
var deferreturn *obj.LSym
// Note about encoding: Prog.scond holds the condition encoding,
// but XOR'ed with C_SCOND_XOR, so that C_SCOND_NONE == 0.
// The code that shifts the value << 28 has the responsibility
// for XORing with C_SCOND_XOR too.
// asmoutnacl assembles the instruction p. It replaces asmout for NaCl.
// It returns the total number of bytes put in out, and it can change
// p->pc if extra padding is necessary.
// In rare cases, asmoutnacl might split p into two instructions.
// origPC is the PC for this Prog (no padding is taken into account).
func asmoutnacl(ctxt *obj.Link, origPC int32, p *obj.Prog, o *Optab, out []uint32) int {
size := int(o.size)
// instruction specific
switch p.As {
default:
if out != nil {
asmout(ctxt, p, o, out)
}
case ADATABUNDLE, // align to 16-byte boundary
ADATABUNDLEEND: // zero width instruction, just to align next instruction to 16-byte boundary
p.Pc = (p.Pc + 15) &^ 15
if out != nil {
asmout(ctxt, p, o, out)
}
case obj.AUNDEF,
APLD:
size = 4
if out != nil {
switch p.As {
case obj.AUNDEF:
out[0] = 0xe7fedef0 // NACL_INSTR_ARM_ABORT_NOW (UDF #0xEDE0)
case APLD:
out[0] = 0xe1a01001 // (MOVW R1, R1)
}
}
case AB, ABL:
if p.To.Type != obj.TYPE_MEM {
if out != nil {
asmout(ctxt, p, o, out)
}
} else {
if p.To.Offset != 0 || size != 4 || p.To.Reg > REG_R15 || p.To.Reg < REG_R0 {
ctxt.Diag("unsupported instruction: %v", p)
}
if p.Pc&15 == 12 {
p.Pc += 4
}
if out != nil {
out[0] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03c0013f | (uint32(p.To.Reg)&15)<<12 | (uint32(p.To.Reg)&15)<<16 // BIC $0xc000000f, Rx
if p.As == AB {
out[1] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x012fff10 | (uint32(p.To.Reg)&15)<<0 // BX Rx
} else { // ABL
out[1] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x012fff30 | (uint32(p.To.Reg)&15)<<0 // BLX Rx
}
}
size = 8
}
// align the last instruction (the actual BL) to the last instruction in a bundle
if p.As == ABL {
if deferreturn == nil {
deferreturn = obj.Linklookup(ctxt, "runtime.deferreturn", 0)
}
if p.To.Sym == deferreturn {
p.Pc = ((int64(origPC) + 15) &^ 15) + 16 - int64(size)
} else {
p.Pc += (16 - ((p.Pc + int64(size)) & 15)) & 15
}
}
case ALDREX,
ALDREXD,
AMOVB,
AMOVBS,
AMOVBU,
AMOVD,
AMOVF,
AMOVH,
AMOVHS,
AMOVHU,
AMOVM,
AMOVW,
ASTREX,
ASTREXD:
if p.To.Type == obj.TYPE_REG && p.To.Reg == REG_R15 && p.From.Reg == REG_R13 { // MOVW.W x(R13), PC
if out != nil {
asmout(ctxt, p, o, out)
}
if size == 4 {
if out != nil {
// Note: 5c and 5g reg.c know that DIV/MOD smashes R12
// so that this return instruction expansion is valid.
out[0] = out[0] &^ 0x3000 // change PC to R12
out[1] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03ccc13f // BIC $0xc000000f, R12
out[2] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x012fff1c // BX R12
}
size += 8
if (p.Pc+int64(size))&15 == 4 {
p.Pc += 4
}
break
} else {
// if the instruction used more than 4 bytes, then it must have used a very large
// offset to update R13, so we need to additionally mask R13.
if out != nil {
out[size/4-1] &^= 0x3000 // change PC to R12
out[size/4] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03cdd103 // BIC $0xc0000000, R13
out[size/4+1] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03ccc13f // BIC $0xc000000f, R12
out[size/4+2] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x012fff1c // BX R12
}
// p->pc+size is only ok at 4 or 12 mod 16.
if (p.Pc+int64(size))%8 == 0 {
p.Pc += 4
}
size += 12
break
}
}
if p.To.Type == obj.TYPE_REG && p.To.Reg == REG_R15 {
ctxt.Diag("unsupported instruction (move to another register and use indirect jump instead): %v", p)
}
if p.To.Type == obj.TYPE_MEM && p.To.Reg == REG_R13 && (p.Scond&C_WBIT != 0) && size > 4 {
// function prolog with very large frame size: MOVW.W R14,-100004(R13)
// split it into two instructions:
// ADD $-100004, R13
// MOVW R14, 0(R13)
q := ctxt.NewProg()
p.Scond &^= C_WBIT
*q = *p
a := &p.To
var a2 *obj.Addr
if p.To.Type == obj.TYPE_MEM {
a2 = &q.To
} else {
a2 = &q.From
}
nocache(q)
nocache(p)
// insert q after p
q.Link = p.Link
p.Link = q
q.Pcond = nil
// make p into ADD $X, R13
p.As = AADD
p.From = *a
p.From.Reg = 0
p.From.Type = obj.TYPE_CONST
p.To = obj.Addr{}
p.To.Type = obj.TYPE_REG
p.To.Reg = REG_R13
// make q into p but load/store from 0(R13)
q.Spadj = 0
*a2 = obj.Addr{}
a2.Type = obj.TYPE_MEM
a2.Reg = REG_R13
a2.Sym = nil
a2.Offset = 0
size = int(oplook(ctxt, p).size)
break
}
if (p.To.Type == obj.TYPE_MEM && p.To.Reg != REG_R9) || // MOVW Rx, X(Ry), y != 9
(p.From.Type == obj.TYPE_MEM && p.From.Reg != REG_R9) { // MOVW X(Rx), Ry, x != 9
var a *obj.Addr
if p.To.Type == obj.TYPE_MEM {
a = &p.To
} else {
a = &p.From
}
reg := int(a.Reg)
if size == 4 {
// if addr.reg == 0, then it is probably load from x(FP) with small x, no need to modify.
if reg == 0 {
if out != nil {
asmout(ctxt, p, o, out)
}
} else {
if out != nil {
out[0] = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x03c00103 | (uint32(reg)&15)<<16 | (uint32(reg)&15)<<12 // BIC $0xc0000000, Rx
}
if p.Pc&15 == 12 {
p.Pc += 4
}
size += 4
if out != nil {
asmout(ctxt, p, o, out[1:])
}
}
break
} else {
// if a load/store instruction takes more than 1 word to implement, then
// we need to separate the instruction into two:
// 1. explicitly load the address into R11.
// 2. load/store from R11.
// This won't handle .W/.P, so we should reject such code.
if p.Scond&(C_PBIT|C_WBIT) != 0 {
ctxt.Diag("unsupported instruction (.P/.W): %v", p)
}
q := ctxt.NewProg()
*q = *p
var a2 *obj.Addr
if p.To.Type == obj.TYPE_MEM {
a2 = &q.To
} else {
a2 = &q.From
}
nocache(q)
nocache(p)
// insert q after p
q.Link = p.Link
p.Link = q
q.Pcond = nil
// make p into MOVW $X(R), R11
p.As = AMOVW
p.From = *a
p.From.Type = obj.TYPE_ADDR
p.To = obj.Addr{}
p.To.Type = obj.TYPE_REG
p.To.Reg = REG_R11
// make q into p but load/store from 0(R11)
*a2 = obj.Addr{}
a2.Type = obj.TYPE_MEM
a2.Reg = REG_R11
a2.Sym = nil
a2.Offset = 0
size = int(oplook(ctxt, p).size)
break
}
} else if out != nil {
asmout(ctxt, p, o, out)
}
}
// destination register specific
if p.To.Type == obj.TYPE_REG {
switch p.To.Reg {
case REG_R9:
ctxt.Diag("invalid instruction, cannot write to R9: %v", p)
case REG_R13:
if out != nil {
out[size/4] = 0xe3cdd103 // BIC $0xc0000000, R13
}
if (p.Pc+int64(size))&15 == 0 {
p.Pc += 4
}
size += 4
}
}
return size
}
func span5(ctxt *obj.Link, cursym *obj.LSym) {
var p *obj.Prog
var op *obj.Prog
p = cursym.Text
if p == nil || p.Link == nil { // handle external functions and ELF section symbols
return
}
if oprange[AAND&obj.AMask] == nil {
buildop(ctxt)
}
ctxt.Cursym = cursym
ctxt.Autosize = int32(p.To.Offset + 4)
c := int32(0)
op = p
p = p.Link
var i int
var m int
var o *Optab
for ; p != nil || ctxt.Blitrl != nil; op, p = p, p.Link {
if p == nil {
if checkpool(ctxt, op, 0) {
p = op
continue
}
// can't happen: blitrl is not nil, but checkpool didn't flushpool
ctxt.Diag("internal inconsistency")
break
}
ctxt.Curp = p
p.Pc = int64(c)
o = oplook(ctxt, p)
if ctxt.Headtype != obj.Hnacl {
m = int(o.size)
} else {
m = asmoutnacl(ctxt, c, p, o, nil)
c = int32(p.Pc) // asmoutnacl might change pc for alignment
o = oplook(ctxt, p) // asmoutnacl might change p in rare cases
}
if m%4 != 0 || p.Pc%4 != 0 {
ctxt.Diag("!pc invalid: %v size=%d", p, m)
}
// must check literal pool here in case p generates many instructions
if ctxt.Blitrl != nil {
i = m
if checkpool(ctxt, op, i) {
p = op
continue
}
}
if m == 0 && (p.As != obj.AFUNCDATA && p.As != obj.APCDATA && p.As != ADATABUNDLEEND && p.As != obj.ANOP && p.As != obj.AUSEFIELD) {
ctxt.Diag("zero-width instruction\n%v", p)
continue
}
switch o.flag & (LFROM | LTO | LPOOL) {
case LFROM:
addpool(ctxt, p, &p.From)
case LTO:
addpool(ctxt, p, &p.To)
case LPOOL:
if p.Scond&C_SCOND == C_SCOND_NONE {
flushpool(ctxt, p, 0, 0)
}
}
if p.As == AMOVW && p.To.Type == obj.TYPE_REG && p.To.Reg == REGPC && p.Scond&C_SCOND == C_SCOND_NONE {
flushpool(ctxt, p, 0, 0)
}
c += int32(m)
}
cursym.Size = int64(c)
/*
* if any procedure is large enough to
* generate a large SBRA branch, then
* generate extra passes putting branches
* around jmps to fix. this is rare.
*/
times := 0
var bflag int
var opc int32
var out [6 + 3]uint32
for {
if ctxt.Debugvlog != 0 {
ctxt.Logf("%5.2f span1\n", obj.Cputime())
}
bflag = 0
c = 0
times++
cursym.Text.Pc = 0 // force re-layout the code.
for p = cursym.Text; p != nil; p = p.Link {
ctxt.Curp = p
o = oplook(ctxt, p)
if int64(c) > p.Pc {
p.Pc = int64(c)
}
/* very large branches
if(o->type == 6 && p->pcond) {
otxt = p->pcond->pc - c;
if(otxt < 0)
otxt = -otxt;
if(otxt >= (1L<<17) - 10) {
q = emallocz(sizeof(Prog));
q->link = p->link;
p->link = q;
q->as = AB;
q->to.type = TYPE_BRANCH;
q->pcond = p->pcond;
p->pcond = q;
q = emallocz(sizeof(Prog));
q->link = p->link;
p->link = q;
q->as = AB;
q->to.type = TYPE_BRANCH;
q->pcond = q->link->link;
bflag = 1;
}
}
*/
opc = int32(p.Pc)
if ctxt.Headtype != obj.Hnacl {
m = int(o.size)
} else {
m = asmoutnacl(ctxt, c, p, o, nil)
}
if p.Pc != int64(opc) {
bflag = 1
}
//print("%v pc changed %d to %d in iter. %d\n", p, opc, (int32)p->pc, times);
c = int32(p.Pc + int64(m))
if m%4 != 0 || p.Pc%4 != 0 {
ctxt.Diag("pc invalid: %v size=%d", p, m)
}
if m/4 > len(out) {
ctxt.Diag("instruction size too large: %d > %d", m/4, len(out))
}
if m == 0 && (p.As != obj.AFUNCDATA && p.As != obj.APCDATA && p.As != ADATABUNDLEEND && p.As != obj.ANOP && p.As != obj.AUSEFIELD) {
if p.As == obj.ATEXT {
ctxt.Autosize = int32(p.To.Offset + 4)
continue
}
ctxt.Diag("zero-width instruction\n%v", p)
continue
}
}
cursym.Size = int64(c)
if bflag == 0 {
break
}
}
if c%4 != 0 {
ctxt.Diag("sym->size=%d, invalid", c)
}
/*
* lay out the code. all the pc-relative code references,
* even cross-function, are resolved now;
* only data references need to be relocated.
* with more work we could leave cross-function
* code references to be relocated too, and then
* perhaps we'd be able to parallelize the span loop above.
*/
p = cursym.Text
ctxt.Autosize = int32(p.To.Offset + 4)
cursym.Grow(cursym.Size)
bp := cursym.P
c = int32(p.Pc) // even p->link might need extra padding
var v int
for p = p.Link; p != nil; p = p.Link {
ctxt.Pc = p.Pc
ctxt.Curp = p
o = oplook(ctxt, p)
opc = int32(p.Pc)
if ctxt.Headtype != obj.Hnacl {
asmout(ctxt, p, o, out[:])
m = int(o.size)
} else {
m = asmoutnacl(ctxt, c, p, o, out[:])
if int64(opc) != p.Pc {
ctxt.Diag("asmoutnacl broken: pc changed (%d->%d) in last stage: %v", opc, int32(p.Pc), p)
}
}
if m%4 != 0 || p.Pc%4 != 0 {
ctxt.Diag("final stage: pc invalid: %v size=%d", p, m)
}
if int64(c) > p.Pc {
ctxt.Diag("PC padding invalid: want %#d, has %#d: %v", p.Pc, c, p)
}
for int64(c) != p.Pc {
// emit 0xe1a00000 (MOVW R0, R0)
bp[0] = 0x00
bp = bp[1:]
bp[0] = 0x00
bp = bp[1:]
bp[0] = 0xa0
bp = bp[1:]
bp[0] = 0xe1
bp = bp[1:]
c += 4
}
for i = 0; i < m/4; i++ {
v = int(out[i])
bp[0] = byte(v)
bp = bp[1:]
bp[0] = byte(v >> 8)
bp = bp[1:]
bp[0] = byte(v >> 16)
bp = bp[1:]
bp[0] = byte(v >> 24)
bp = bp[1:]
}
c += int32(m)
}
}
/*
* when the first reference to the literal pool threatens
* to go out of range of a 12-bit PC-relative offset,
* drop the pool now, and branch round it.
* this happens only in extended basic blocks that exceed 4k.
*/
func checkpool(ctxt *obj.Link, p *obj.Prog, sz int) bool {
if pool.size >= 0xff0 || immaddr(int32((p.Pc+int64(sz)+4)+4+int64(12+pool.size)-int64(pool.start+8))) == 0 {
return flushpool(ctxt, p, 1, 0)
} else if p.Link == nil {
return flushpool(ctxt, p, 2, 0)
}
return false
}
func flushpool(ctxt *obj.Link, p *obj.Prog, skip int, force int) bool {
if ctxt.Blitrl != nil {
if skip != 0 {
if false && skip == 1 {
fmt.Printf("note: flush literal pool at %x: len=%d ref=%x\n", uint64(p.Pc+4), pool.size, pool.start)
}
q := ctxt.NewProg()
q.As = AB
q.To.Type = obj.TYPE_BRANCH
q.Pcond = p.Link
q.Link = ctxt.Blitrl
q.Lineno = p.Lineno
ctxt.Blitrl = q
} else if force == 0 && (p.Pc+int64(12+pool.size)-int64(pool.start) < 2048) { // 12 take into account the maximum nacl literal pool alignment padding size
return false
}
if ctxt.Headtype == obj.Hnacl && pool.size%16 != 0 {
// if pool is not multiple of 16 bytes, add an alignment marker
q := ctxt.NewProg()
q.As = ADATABUNDLEEND
ctxt.Elitrl.Link = q
ctxt.Elitrl = q
}
// The line number for constant pool entries doesn't really matter.
// We set it to the line number of the preceding instruction so that
// there are no deltas to encode in the pc-line tables.
for q := ctxt.Blitrl; q != nil; q = q.Link {
q.Lineno = p.Lineno
}
ctxt.Elitrl.Link = p.Link
p.Link = ctxt.Blitrl
ctxt.Blitrl = nil /* BUG: should refer back to values until out-of-range */
ctxt.Elitrl = nil
pool.size = 0
pool.start = 0
pool.extra = 0
return true
}
return false
}
func addpool(ctxt *obj.Link, p *obj.Prog, a *obj.Addr) {
var t obj.Prog
c := aclass(ctxt, a)
t.Ctxt = ctxt
t.As = AWORD
switch c {
default:
t.To.Offset = a.Offset
t.To.Sym = a.Sym
t.To.Type = a.Type
t.To.Name = a.Name
if ctxt.Flag_shared && t.To.Sym != nil {
t.Rel = p
}
case C_SROREG,
C_LOREG,
C_ROREG,
C_FOREG,
C_SOREG,
C_HOREG,
C_FAUTO,
C_SAUTO,
C_LAUTO,
C_LACON:
t.To.Type = obj.TYPE_CONST
t.To.Offset = ctxt.Instoffset
}
if t.Rel == nil {
for q := ctxt.Blitrl; q != nil; q = q.Link { /* could hash on t.t0.offset */
if q.Rel == nil && q.To == t.To {
p.Pcond = q
return
}
}
}
if ctxt.Headtype == obj.Hnacl && pool.size%16 == 0 {
// start a new data bundle
q := ctxt.NewProg()
q.As = ADATABUNDLE
q.Pc = int64(pool.size)
pool.size += 4
if ctxt.Blitrl == nil {
ctxt.Blitrl = q
pool.start = uint32(p.Pc)
} else {
ctxt.Elitrl.Link = q
}
ctxt.Elitrl = q
}
q := ctxt.NewProg()
*q = t
q.Pc = int64(pool.size)
if ctxt.Blitrl == nil {
ctxt.Blitrl = q
pool.start = uint32(p.Pc)
} else {
ctxt.Elitrl.Link = q
}
ctxt.Elitrl = q
pool.size += 4
p.Pcond = q
}
func regoff(ctxt *obj.Link, a *obj.Addr) int32 {
ctxt.Instoffset = 0
aclass(ctxt, a)
return int32(ctxt.Instoffset)
}
func immrot(v uint32) int32 {
for i := 0; i < 16; i++ {
if v&^0xff == 0 {
return int32(uint32(int32(i)<<8) | v | 1<<25)
}
v = v<<2 | v>>30
}
return 0
}
func immaddr(v int32) int32 {
if v >= 0 && v <= 0xfff {
return v&0xfff | 1<<24 | 1<<23 /* pre indexing */ /* pre indexing, up */
}
if v >= -0xfff && v < 0 {
return -v&0xfff | 1<<24 /* pre indexing */
}
return 0
}
func immfloat(v int32) bool {
return v&0xC03 == 0 /* offset will fit in floating-point load/store */
}
func immhalf(v int32) bool {
if v >= 0 && v <= 0xff {
return v|1<<24|1<<23 != 0 /* pre indexing */ /* pre indexing, up */
}
if v >= -0xff && v < 0 {
return -v&0xff|1<<24 != 0 /* pre indexing */
}
return false
}
func aclass(ctxt *obj.Link, a *obj.Addr) int {
switch a.Type {
case obj.TYPE_NONE:
return C_NONE
case obj.TYPE_REG:
ctxt.Instoffset = 0
if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
return C_REG
}
if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
return C_FREG
}
if a.Reg == REG_FPSR || a.Reg == REG_FPCR {
return C_FCR
}
if a.Reg == REG_CPSR || a.Reg == REG_SPSR {
return C_PSR
}
return C_GOK
case obj.TYPE_REGREG:
return C_REGREG
case obj.TYPE_REGREG2:
return C_REGREG2
case obj.TYPE_REGLIST:
return C_REGLIST
case obj.TYPE_SHIFT:
return C_SHIFT
case obj.TYPE_MEM:
switch a.Name {
case obj.NAME_EXTERN,
obj.NAME_GOTREF,
obj.NAME_STATIC:
if a.Sym == nil || a.Sym.Name == "" {
fmt.Printf("null sym external\n")
return C_GOK
}
ctxt.Instoffset = 0 // s.b. unused but just in case
if a.Sym.Type == obj.STLSBSS {
if ctxt.Flag_shared {
return C_TLS_IE
} else {
return C_TLS_LE
}
}
return C_ADDR
case obj.NAME_AUTO:
ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset
if t := immaddr(int32(ctxt.Instoffset)); t != 0 {
if immhalf(int32(ctxt.Instoffset)) {
if immfloat(t) {
return C_HFAUTO
}
return C_HAUTO
}
if immfloat(t) {
return C_FAUTO
}
return C_SAUTO
}
return C_LAUTO
case obj.NAME_PARAM:
ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset + 4
if t := immaddr(int32(ctxt.Instoffset)); t != 0 {
if immhalf(int32(ctxt.Instoffset)) {
if immfloat(t) {
return C_HFAUTO
}
return C_HAUTO
}
if immfloat(t) {
return C_FAUTO
}
return C_SAUTO
}
return C_LAUTO
case obj.NAME_NONE:
ctxt.Instoffset = a.Offset
if t := immaddr(int32(ctxt.Instoffset)); t != 0 {
if immhalf(int32(ctxt.Instoffset)) { /* n.b. that it will also satisfy immrot */
if immfloat(t) {
return C_HFOREG
}
return C_HOREG
}
if immfloat(t) {
return C_FOREG /* n.b. that it will also satisfy immrot */
}
if immrot(uint32(ctxt.Instoffset)) != 0 {
return C_SROREG
}
if immhalf(int32(ctxt.Instoffset)) {
return C_HOREG
}
return C_SOREG
}
if immrot(uint32(ctxt.Instoffset)) != 0 {
return C_ROREG
}
return C_LOREG
}
return C_GOK
case obj.TYPE_FCONST:
if chipzero5(ctxt, a.Val.(float64)) >= 0 {
return C_ZFCON
}
if chipfloat5(ctxt, a.Val.(float64)) >= 0 {
return C_SFCON
}
return C_LFCON
case obj.TYPE_TEXTSIZE:
return C_TEXTSIZE
case obj.TYPE_CONST,
obj.TYPE_ADDR:
switch a.Name {
case obj.NAME_NONE:
ctxt.Instoffset = a.Offset
if a.Reg != 0 {
return aconsize(ctxt)
}
if immrot(uint32(ctxt.Instoffset)) != 0 {
return C_RCON
}
if immrot(^uint32(ctxt.Instoffset)) != 0 {
return C_NCON
}
return C_LCON
case obj.NAME_EXTERN,
obj.NAME_GOTREF,
obj.NAME_STATIC:
s := a.Sym
if s == nil {
break
}
ctxt.Instoffset = 0 // s.b. unused but just in case
return C_LCONADDR
case obj.NAME_AUTO:
ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset
return aconsize(ctxt)
case obj.NAME_PARAM:
ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset + 4
return aconsize(ctxt)
}
return C_GOK
case obj.TYPE_BRANCH:
return C_SBRA
}
return C_GOK
}
func aconsize(ctxt *obj.Link) int {
if immrot(uint32(ctxt.Instoffset)) != 0 {
return C_RACON
}
if immrot(uint32(-ctxt.Instoffset)) != 0 {
return C_RACON
}
return C_LACON
}
func prasm(p *obj.Prog) {
fmt.Printf("%v\n", p)
}
func oplook(ctxt *obj.Link, p *obj.Prog) *Optab {
a1 := int(p.Optab)
if a1 != 0 {
return &optab[a1-1]
}
a1 = int(p.From.Class)
if a1 == 0 {
a1 = aclass(ctxt, &p.From) + 1
p.From.Class = int8(a1)
}
a1--
a3 := int(p.To.Class)
if a3 == 0 {
a3 = aclass(ctxt, &p.To) + 1
p.To.Class = int8(a3)
}
a3--
a2 := C_NONE
if p.Reg != 0 {
a2 = C_REG
}
if false { /*debug['O']*/
fmt.Printf("oplook %v %v %v %v\n", p.As, DRconv(a1), DRconv(a2), DRconv(a3))
fmt.Printf("\t\t%d %d\n", p.From.Type, p.To.Type)
}
ops := oprange[p.As&obj.AMask]
c1 := &xcmp[a1]
c3 := &xcmp[a3]
for i := range ops {
op := &ops[i]
if int(op.a2) == a2 && c1[op.a1] && c3[op.a3] {
p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
return op
}
}
ctxt.Diag("illegal combination %v; %v %v %v, %d %d", p, DRconv(a1), DRconv(a2), DRconv(a3), p.From.Type, p.To.Type)
ctxt.Diag("from %d %d to %d %d\n", p.From.Type, p.From.Name, p.To.Type, p.To.Name)
prasm(p)
if ops == nil {
ops = optab
}
return &ops[0]
}
func cmp(a int, b int) bool {
if a == b {
return true
}
switch a {
case C_LCON:
if b == C_RCON || b == C_NCON {
return true
}
case C_LACON:
if b == C_RACON {
return true
}
case C_LFCON:
if b == C_ZFCON || b == C_SFCON {
return true
}
case C_HFAUTO:
return b == C_HAUTO || b == C_FAUTO
case C_FAUTO, C_HAUTO:
return b == C_HFAUTO
case C_SAUTO:
return cmp(C_HFAUTO, b)
case C_LAUTO:
return cmp(C_SAUTO, b)
case C_HFOREG:
return b == C_HOREG || b == C_FOREG
case C_FOREG, C_HOREG:
return b == C_HFOREG
case C_SROREG:
return cmp(C_SOREG, b) || cmp(C_ROREG, b)
case C_SOREG, C_ROREG:
return b == C_SROREG || cmp(C_HFOREG, b)
case C_LOREG:
return cmp(C_SROREG, b)
case C_LBRA:
if b == C_SBRA {
return true
}
case C_HREG:
return cmp(C_SP, b) || cmp(C_PC, b)
}
return false
}
type ocmp []Optab
func (x ocmp) Len() int {
return len(x)
}
func (x ocmp) Swap(i, j int) {
x[i], x[j] = x[j], x[i]
}
func (x ocmp) Less(i, j int) bool {
p1 := &x[i]
p2 := &x[j]
n := int(p1.as) - int(p2.as)
if n != 0 {
return n < 0
}
n = int(p1.a1) - int(p2.a1)
if n != 0 {
return n < 0
}
n = int(p1.a2) - int(p2.a2)
if n != 0 {
return n < 0
}
n = int(p1.a3) - int(p2.a3)
if n != 0 {
return n < 0
}
return false
}
func opset(a, b0 obj.As) {
oprange[a&obj.AMask] = oprange[b0]
}
func buildop(ctxt *obj.Link) {
var n int
for i := 0; i < C_GOK; i++ {
for n = 0; n < C_GOK; n++ {
if cmp(n, i) {
xcmp[i][n] = true
}
}
}
for n = 0; optab[n].as != obj.AXXX; n++ {
if optab[n].flag&LPCREL != 0 {
if ctxt.Flag_shared {
optab[n].size += int8(optab[n].pcrelsiz)
} else {
optab[n].flag &^= LPCREL
}
}
}
sort.Sort(ocmp(optab[:n]))
for i := 0; i < n; i++ {
r := optab[i].as
r0 := r & obj.AMask
start := i
for optab[i].as == r {
i++
}
oprange[r0] = optab[start:i]
i--
switch r {
default:
ctxt.Diag("unknown op in build: %v", r)
log.Fatalf("bad code")
case AADD:
opset(AAND, r0)
opset(AEOR, r0)
opset(ASUB, r0)
opset(ARSB, r0)
opset(AADC, r0)
opset(ASBC, r0)
opset(ARSC, r0)
opset(AORR, r0)
opset(ABIC, r0)
case ACMP:
opset(ATEQ, r0)
opset(ACMN, r0)
case AMVN:
break
case ABEQ:
opset(ABNE, r0)
opset(ABCS, r0)
opset(ABHS, r0)
opset(ABCC, r0)
opset(ABLO, r0)
opset(ABMI, r0)
opset(ABPL, r0)
opset(ABVS, r0)
opset(ABVC, r0)
opset(ABHI, r0)
opset(ABLS, r0)
opset(ABGE, r0)
opset(ABLT, r0)
opset(ABGT, r0)
opset(ABLE, r0)
case ASLL:
opset(ASRL, r0)
opset(ASRA, r0)
case AMUL:
opset(AMULU, r0)
case ADIV:
opset(AMOD, r0)
opset(AMODU, r0)
opset(ADIVU, r0)
case AMOVW,
AMOVB,
AMOVBS,
AMOVBU,
AMOVH,
AMOVHS,
AMOVHU:
break
case ASWPW:
opset(ASWPBU, r0)
case AB,
ABL,
ABX,
ABXRET,
obj.ADUFFZERO,
obj.ADUFFCOPY,
ASWI,
AWORD,
AMOVM,
ARFE,
obj.ATEXT,
obj.AUSEFIELD,
obj.ATYPE:
break
case AADDF:
opset(AADDD, r0)
opset(ASUBF, r0)
opset(ASUBD, r0)
opset(AMULF, r0)
opset(AMULD, r0)
opset(ADIVF, r0)
opset(ADIVD, r0)
opset(ASQRTF, r0)
opset(ASQRTD, r0)
opset(AMOVFD, r0)
opset(AMOVDF, r0)
opset(AABSF, r0)
opset(AABSD, r0)
opset(ANEGF, r0)
opset(ANEGD, r0)
case ACMPF:
opset(ACMPD, r0)
case AMOVF:
opset(AMOVD, r0)
case AMOVFW:
opset(AMOVDW, r0)
case AMOVWF:
opset(AMOVWD, r0)
case AMULL:
opset(AMULAL, r0)
opset(AMULLU, r0)
opset(AMULALU, r0)
case AMULWT:
opset(AMULWB, r0)
case AMULAWT:
opset(AMULAWB, r0)
case AMULA,
ALDREX,
ASTREX,
ALDREXD,
ASTREXD,
ATST,
APLD,
obj.AUNDEF,
ACLZ,
obj.AFUNCDATA,
obj.APCDATA,
obj.ANOP,
ADATABUNDLE,
ADATABUNDLEEND:
break
}
}
}
func asmout(ctxt *obj.Link, p *obj.Prog, o *Optab, out []uint32) {
ctxt.Printp = p
o1 := uint32(0)
o2 := uint32(0)
o3 := uint32(0)
o4 := uint32(0)
o5 := uint32(0)
o6 := uint32(0)
ctxt.Armsize += int32(o.size)
if false { /*debug['P']*/
fmt.Printf("%x: %v\ttype %d\n", uint32(p.Pc), p, o.type_)
}
switch o.type_ {
default:
ctxt.Diag("unknown asm %d", o.type_)
prasm(p)
case 0: /* pseudo ops */
if false { /*debug['G']*/
fmt.Printf("%x: %s: arm\n", uint32(p.Pc), p.From.Sym.Name)
}
case 1: /* op R,[R],R */
o1 = oprrr(ctxt, p.As, int(p.Scond))
rf := int(p.From.Reg)
rt := int(p.To.Reg)
r := int(p.Reg)
if p.To.Type == obj.TYPE_NONE {
rt = 0
}
if p.As == AMOVB || p.As == AMOVH || p.As == AMOVW || p.As == AMVN {
r = 0
} else if r == 0 {
r = rt
}
o1 |= (uint32(rf)&15)<<0 | (uint32(r)&15)<<16 | (uint32(rt)&15)<<12
case 2: /* movbu $I,[R],R */
aclass(ctxt, &p.From)
o1 = oprrr(ctxt, p.As, int(p.Scond))
o1 |= uint32(immrot(uint32(ctxt.Instoffset)))
rt := int(p.To.Reg)
r := int(p.Reg)
if p.To.Type == obj.TYPE_NONE {
rt = 0
}
if p.As == AMOVW || p.As == AMVN {
r = 0
} else if r == 0 {
r = rt
}
o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12
case 3: /* add R<<[IR],[R],R */
o1 = mov(ctxt, p)
case 4: /* MOVW $off(R), R -> add $off,[R],R */
aclass(ctxt, &p.From)
if ctxt.Instoffset < 0 {
o1 = oprrr(ctxt, ASUB, int(p.Scond))
o1 |= uint32(immrot(uint32(-ctxt.Instoffset)))
} else {
o1 = oprrr(ctxt, AADD, int(p.Scond))
o1 |= uint32(immrot(uint32(ctxt.Instoffset)))
}
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o1 |= (uint32(r) & 15) << 16
o1 |= (uint32(p.To.Reg) & 15) << 12
case 5: /* bra s */
o1 = opbra(ctxt, p, p.As, int(p.Scond))
v := int32(-8)
if p.To.Sym != nil {
rel := obj.Addrel(ctxt.Cursym)
rel.Off = int32(ctxt.Pc)
rel.Siz = 4
rel.Sym = p.To.Sym
v += int32(p.To.Offset)
rel.Add = int64(o1) | (int64(v)>>2)&0xffffff
rel.Type = obj.R_CALLARM
break
}
if p.Pcond != nil {
v = int32((p.Pcond.Pc - ctxt.Pc) - 8)
}
o1 |= (uint32(v) >> 2) & 0xffffff
case 6: /* b ,O(R) -> add $O,R,PC */
aclass(ctxt, &p.To)
o1 = oprrr(ctxt, AADD, int(p.Scond))
o1 |= uint32(immrot(uint32(ctxt.Instoffset)))
o1 |= (uint32(p.To.Reg) & 15) << 16
o1 |= (REGPC & 15) << 12
case 7: /* bl (R) -> blx R */
aclass(ctxt, &p.To)
if ctxt.Instoffset != 0 {
ctxt.Diag("%v: doesn't support BL offset(REG) with non-zero offset %d", p, ctxt.Instoffset)
}
o1 = oprrr(ctxt, ABL, int(p.Scond))
o1 |= (uint32(p.To.Reg) & 15) << 0
rel := obj.Addrel(ctxt.Cursym)
rel.Off = int32(ctxt.Pc)
rel.Siz = 0
rel.Type = obj.R_CALLIND
case 8: /* sll $c,[R],R -> mov (R<<$c),R */
aclass(ctxt, &p.From)
o1 = oprrr(ctxt, p.As, int(p.Scond))
r := int(p.Reg)
if r == 0 {
r = int(p.To.Reg)
}
o1 |= (uint32(r) & 15) << 0
o1 |= uint32((ctxt.Instoffset & 31) << 7)
o1 |= (uint32(p.To.Reg) & 15) << 12
case 9: /* sll R,[R],R -> mov (R<<R),R */
o1 = oprrr(ctxt, p.As, int(p.Scond))
r := int(p.Reg)
if r == 0 {
r = int(p.To.Reg)
}
o1 |= (uint32(r) & 15) << 0
o1 |= (uint32(p.From.Reg)&15)<<8 | 1<<4
o1 |= (uint32(p.To.Reg) & 15) << 12
case 10: /* swi [$con] */
o1 = oprrr(ctxt, p.As, int(p.Scond))
if p.To.Type != obj.TYPE_NONE {
aclass(ctxt, &p.To)
o1 |= uint32(ctxt.Instoffset & 0xffffff)
}
case 11: /* word */
aclass(ctxt, &p.To)
o1 = uint32(ctxt.Instoffset)
if p.To.Sym != nil {
// This case happens with words generated
// in the PC stream as part of the literal pool.
rel := obj.Addrel(ctxt.Cursym)
rel.Off = int32(ctxt.Pc)
rel.Siz = 4
rel.Sym = p.To.Sym
rel.Add = p.To.Offset
if ctxt.Flag_shared {
if p.To.Name == obj.NAME_GOTREF {
rel.Type = obj.R_GOTPCREL
} else {
rel.Type = obj.R_PCREL
}
rel.Add += ctxt.Pc - p.Rel.Pc - 8
} else {
rel.Type = obj.R_ADDR
}
o1 = 0
}
case 12: /* movw $lcon, reg */
o1 = omvl(ctxt, p, &p.From, int(p.To.Reg))
if o.flag&LPCREL != 0 {
o2 = oprrr(ctxt, AADD, int(p.Scond)) | (uint32(p.To.Reg)&15)<<0 | (REGPC&15)<<16 | (uint32(p.To.Reg)&15)<<12
}
case 13: /* op $lcon, [R], R */
o1 = omvl(ctxt, p, &p.From, REGTMP)
if o1 == 0 {
break
}
o2 = oprrr(ctxt, p.As, int(p.Scond))
o2 |= REGTMP & 15
r := int(p.Reg)
if p.As == AMOVW || p.As == AMVN {
r = 0
} else if r == 0 {
r = int(p.To.Reg)
}
o2 |= (uint32(r) & 15) << 16
if p.To.Type != obj.TYPE_NONE {
o2 |= (uint32(p.To.Reg) & 15) << 12
}
case 14: /* movb/movbu/movh/movhu R,R */
o1 = oprrr(ctxt, ASLL, int(p.Scond))
if p.As == AMOVBU || p.As == AMOVHU {
o2 = oprrr(ctxt, ASRL, int(p.Scond))
} else {
o2 = oprrr(ctxt, ASRA, int(p.Scond))
}
r := int(p.To.Reg)
o1 |= (uint32(p.From.Reg)&15)<<0 | (uint32(r)&15)<<12
o2 |= uint32(r)&15 | (uint32(r)&15)<<12
if p.As == AMOVB || p.As == AMOVBS || p.As == AMOVBU {
o1 |= 24 << 7
o2 |= 24 << 7
} else {
o1 |= 16 << 7
o2 |= 16 << 7
}
case 15: /* mul r,[r,]r */
o1 = oprrr(ctxt, p.As, int(p.Scond))
rf := int(p.From.Reg)
rt := int(p.To.Reg)
r := int(p.Reg)
if r == 0 {
r = rt
}
if rt == r {
r = rf
rf = rt
}
if false {
if rt == r || rf == REGPC&15 || r == REGPC&15 || rt == REGPC&15 {
ctxt.Diag("bad registers in MUL")
prasm(p)
}
}
o1 |= (uint32(rf)&15)<<8 | (uint32(r)&15)<<0 | (uint32(rt)&15)<<16
case 16: /* div r,[r,]r */
o1 = 0xf << 28
o2 = 0
case 17:
o1 = oprrr(ctxt, p.As, int(p.Scond))
rf := int(p.From.Reg)
rt := int(p.To.Reg)
rt2 := int(p.To.Offset)
r := int(p.Reg)
o1 |= (uint32(rf)&15)<<8 | (uint32(r)&15)<<0 | (uint32(rt)&15)<<16 | (uint32(rt2)&15)<<12
case 20: /* mov/movb/movbu R,O(R) */
aclass(ctxt, &p.To)
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
o1 = osr(ctxt, p.As, int(p.From.Reg), int32(ctxt.Instoffset), r, int(p.Scond))
case 21: /* mov/movbu O(R),R -> lr */
aclass(ctxt, &p.From)
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o1 = olr(ctxt, int32(ctxt.Instoffset), r, int(p.To.Reg), int(p.Scond))
if p.As != AMOVW {
o1 |= 1 << 22
}
case 30: /* mov/movb/movbu R,L(R) */
o1 = omvl(ctxt, p, &p.To, REGTMP)
if o1 == 0 {
break
}
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
o2 = osrr(ctxt, int(p.From.Reg), REGTMP&15, r, int(p.Scond))
if p.As != AMOVW {
o2 |= 1 << 22
}
case 31: /* mov/movbu L(R),R -> lr[b] */
o1 = omvl(ctxt, p, &p.From, REGTMP)
if o1 == 0 {
break
}
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o2 = olrr(ctxt, REGTMP&15, r, int(p.To.Reg), int(p.Scond))
if p.As == AMOVBU || p.As == AMOVBS || p.As == AMOVB {
o2 |= 1 << 22
}
case 34: /* mov $lacon,R */
o1 = omvl(ctxt, p, &p.From, REGTMP)
if o1 == 0 {
break
}
o2 = oprrr(ctxt, AADD, int(p.Scond))
o2 |= REGTMP & 15
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o2 |= (uint32(r) & 15) << 16
if p.To.Type != obj.TYPE_NONE {
o2 |= (uint32(p.To.Reg) & 15) << 12
}
case 35: /* mov PSR,R */
o1 = 2<<23 | 0xf<<16 | 0<<0
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
o1 |= (uint32(p.From.Reg) & 1) << 22
o1 |= (uint32(p.To.Reg) & 15) << 12
case 36: /* mov R,PSR */
o1 = 2<<23 | 0x29f<<12 | 0<<4
if p.Scond&C_FBIT != 0 {
o1 ^= 0x010 << 12
}
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
o1 |= (uint32(p.To.Reg) & 1) << 22
o1 |= (uint32(p.From.Reg) & 15) << 0
case 37: /* mov $con,PSR */
aclass(ctxt, &p.From)
o1 = 2<<23 | 0x29f<<12 | 0<<4
if p.Scond&C_FBIT != 0 {
o1 ^= 0x010 << 12
}
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
o1 |= uint32(immrot(uint32(ctxt.Instoffset)))
o1 |= (uint32(p.To.Reg) & 1) << 22
o1 |= (uint32(p.From.Reg) & 15) << 0
case 38, 39:
switch o.type_ {
case 38: /* movm $con,oreg -> stm */
o1 = 0x4 << 25
o1 |= uint32(p.From.Offset & 0xffff)
o1 |= (uint32(p.To.Reg) & 15) << 16
aclass(ctxt, &p.To)
case 39: /* movm oreg,$con -> ldm */
o1 = 0x4<<25 | 1<<20
o1 |= uint32(p.To.Offset & 0xffff)
o1 |= (uint32(p.From.Reg) & 15) << 16
aclass(ctxt, &p.From)
}
if ctxt.Instoffset != 0 {
ctxt.Diag("offset must be zero in MOVM; %v", p)
}
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
if p.Scond&C_PBIT != 0 {
o1 |= 1 << 24
}
if p.Scond&C_UBIT != 0 {
o1 |= 1 << 23
}
if p.Scond&C_SBIT != 0 {
o1 |= 1 << 22
}
if p.Scond&C_WBIT != 0 {
o1 |= 1 << 21
}
case 40: /* swp oreg,reg,reg */
aclass(ctxt, &p.From)
if ctxt.Instoffset != 0 {
ctxt.Diag("offset must be zero in SWP")
}
o1 = 0x2<<23 | 0x9<<4
if p.As != ASWPW {
o1 |= 1 << 22
}
o1 |= (uint32(p.From.Reg) & 15) << 16
o1 |= (uint32(p.Reg) & 15) << 0
o1 |= (uint32(p.To.Reg) & 15) << 12
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 41: /* rfe -> movm.s.w.u 0(r13),[r15] */
o1 = 0xe8fd8000
case 50: /* floating point store */
v := regoff(ctxt, &p.To)
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
o1 = ofsr(ctxt, p.As, int(p.From.Reg), v, r, int(p.Scond), p)
case 51: /* floating point load */
v := regoff(ctxt, &p.From)
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o1 = ofsr(ctxt, p.As, int(p.To.Reg), v, r, int(p.Scond), p) | 1<<20
case 52: /* floating point store, int32 offset UGLY */
o1 = omvl(ctxt, p, &p.To, REGTMP)
if o1 == 0 {
break
}
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
o2 = oprrr(ctxt, AADD, int(p.Scond)) | (REGTMP&15)<<12 | (REGTMP&15)<<16 | (uint32(r)&15)<<0
o3 = ofsr(ctxt, p.As, int(p.From.Reg), 0, REGTMP, int(p.Scond), p)
case 53: /* floating point load, int32 offset UGLY */
o1 = omvl(ctxt, p, &p.From, REGTMP)
if o1 == 0 {
break
}
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o2 = oprrr(ctxt, AADD, int(p.Scond)) | (REGTMP&15)<<12 | (REGTMP&15)<<16 | (uint32(r)&15)<<0
o3 = ofsr(ctxt, p.As, int(p.To.Reg), 0, (REGTMP&15), int(p.Scond), p) | 1<<20
case 54: /* floating point arith */
o1 = oprrr(ctxt, p.As, int(p.Scond))
rf := int(p.From.Reg)
rt := int(p.To.Reg)
r := int(p.Reg)
if r == 0 {
r = rt
if p.As == AMOVF || p.As == AMOVD || p.As == AMOVFD || p.As == AMOVDF || p.As == ASQRTF || p.As == ASQRTD || p.As == AABSF || p.As == AABSD || p.As == ANEGF || p.As == ANEGD {
r = 0
}
}
o1 |= (uint32(rf)&15)<<0 | (uint32(r)&15)<<16 | (uint32(rt)&15)<<12
case 56: /* move to FP[CS]R */
o1 = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0xe<<24 | 1<<8 | 1<<4
o1 |= ((uint32(p.To.Reg)&1)+1)<<21 | (uint32(p.From.Reg)&15)<<12
case 57: /* move from FP[CS]R */
o1 = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0xe<<24 | 1<<8 | 1<<4
o1 |= ((uint32(p.From.Reg)&1)+1)<<21 | (uint32(p.To.Reg)&15)<<12 | 1<<20
case 58: /* movbu R,R */
o1 = oprrr(ctxt, AAND, int(p.Scond))
o1 |= uint32(immrot(0xff))
rt := int(p.To.Reg)
r := int(p.From.Reg)
if p.To.Type == obj.TYPE_NONE {
rt = 0
}
if r == 0 {
r = rt
}
o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12
case 59: /* movw/bu R<<I(R),R -> ldr indexed */
if p.From.Reg == 0 {
if p.As != AMOVW {
ctxt.Diag("byte MOV from shifter operand")
}
o1 = mov(ctxt, p)
break
}
if p.From.Offset&(1<<4) != 0 {
ctxt.Diag("bad shift in LDR")
}
o1 = olrr(ctxt, int(p.From.Offset), int(p.From.Reg), int(p.To.Reg), int(p.Scond))
if p.As == AMOVBU {
o1 |= 1 << 22
}
case 60: /* movb R(R),R -> ldrsb indexed */
if p.From.Reg == 0 {
ctxt.Diag("byte MOV from shifter operand")
o1 = mov(ctxt, p)
break
}
if p.From.Offset&(^0xf) != 0 {
ctxt.Diag("bad shift in LDRSB")
}
o1 = olhrr(ctxt, int(p.From.Offset), int(p.From.Reg), int(p.To.Reg), int(p.Scond))
o1 ^= 1<<5 | 1<<6
case 61: /* movw/b/bu R,R<<[IR](R) -> str indexed */
if p.To.Reg == 0 {
ctxt.Diag("MOV to shifter operand")
}
o1 = osrr(ctxt, int(p.From.Reg), int(p.To.Offset), int(p.To.Reg), int(p.Scond))
if p.As == AMOVB || p.As == AMOVBS || p.As == AMOVBU {
o1 |= 1 << 22
}
/* reloc ops */
case 64: /* mov/movb/movbu R,addr */
o1 = omvl(ctxt, p, &p.To, REGTMP)
if o1 == 0 {
break
}
o2 = osr(ctxt, p.As, int(p.From.Reg), 0, REGTMP, int(p.Scond))
if o.flag&LPCREL != 0 {
o3 = o2
o2 = oprrr(ctxt, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12
}
case 65: /* mov/movbu addr,R */
o1 = omvl(ctxt, p, &p.From, REGTMP)
if o1 == 0 {
break
}
o2 = olr(ctxt, 0, REGTMP, int(p.To.Reg), int(p.Scond))
if p.As == AMOVBU || p.As == AMOVBS || p.As == AMOVB {
o2 |= 1 << 22
}
if o.flag&LPCREL != 0 {
o3 = o2
o2 = oprrr(ctxt, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12
}
case 101: /* movw tlsvar,R, local exec*/
if p.Scond&C_SCOND != C_SCOND_NONE {
ctxt.Diag("conditional tls")
}
o1 = omvl(ctxt, p, &p.From, int(p.To.Reg))
case 102: /* movw tlsvar,R, initial exec*/
if p.Scond&C_SCOND != C_SCOND_NONE {
ctxt.Diag("conditional tls")
}
o1 = omvl(ctxt, p, &p.From, int(p.To.Reg))
o2 = olrr(ctxt, int(p.To.Reg)&15, (REGPC & 15), int(p.To.Reg), int(p.Scond))
case 103: /* word tlsvar, local exec */
if p.To.Sym == nil {
ctxt.Diag("nil sym in tls %v", p)
}
if p.To.Offset != 0 {
ctxt.Diag("offset against tls var in %v", p)
}
// This case happens with words generated in the PC stream as part of
// the literal pool.
rel := obj.Addrel(ctxt.Cursym)
rel.Off = int32(ctxt.Pc)
rel.Siz = 4
rel.Sym = p.To.Sym
rel.Type = obj.R_TLS_LE
o1 = 0
case 104: /* word tlsvar, initial exec */
if p.To.Sym == nil {
ctxt.Diag("nil sym in tls %v", p)
}
if p.To.Offset != 0 {
ctxt.Diag("offset against tls var in %v", p)
}
rel := obj.Addrel(ctxt.Cursym)
rel.Off = int32(ctxt.Pc)
rel.Siz = 4
rel.Sym = p.To.Sym
rel.Type = obj.R_TLS_IE
rel.Add = ctxt.Pc - p.Rel.Pc - 8 - int64(rel.Siz)
case 68: /* floating point store -> ADDR */
o1 = omvl(ctxt, p, &p.To, REGTMP)
if o1 == 0 {
break
}
o2 = ofsr(ctxt, p.As, int(p.From.Reg), 0, REGTMP, int(p.Scond), p)
if o.flag&LPCREL != 0 {
o3 = o2
o2 = oprrr(ctxt, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12
}
case 69: /* floating point load <- ADDR */
o1 = omvl(ctxt, p, &p.From, REGTMP)
if o1 == 0 {
break
}
o2 = ofsr(ctxt, p.As, int(p.To.Reg), 0, (REGTMP&15), int(p.Scond), p) | 1<<20
if o.flag&LPCREL != 0 {
o3 = o2
o2 = oprrr(ctxt, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12
}
/* ArmV4 ops: */
case 70: /* movh/movhu R,O(R) -> strh */
aclass(ctxt, &p.To)
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
o1 = oshr(ctxt, int(p.From.Reg), int32(ctxt.Instoffset), r, int(p.Scond))
case 71: /* movb/movh/movhu O(R),R -> ldrsb/ldrsh/ldrh */
aclass(ctxt, &p.From)
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o1 = olhr(ctxt, int32(ctxt.Instoffset), r, int(p.To.Reg), int(p.Scond))
if p.As == AMOVB || p.As == AMOVBS {
o1 ^= 1<<5 | 1<<6
} else if p.As == AMOVH || p.As == AMOVHS {
o1 ^= (1 << 6)
}
case 72: /* movh/movhu R,L(R) -> strh */
o1 = omvl(ctxt, p, &p.To, REGTMP)
if o1 == 0 {
break
}
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
o2 = oshrr(ctxt, int(p.From.Reg), REGTMP&15, r, int(p.Scond))
case 73: /* movb/movh/movhu L(R),R -> ldrsb/ldrsh/ldrh */
o1 = omvl(ctxt, p, &p.From, REGTMP)
if o1 == 0 {
break
}
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o2 = olhrr(ctxt, REGTMP&15, r, int(p.To.Reg), int(p.Scond))
if p.As == AMOVB || p.As == AMOVBS {
o2 ^= 1<<5 | 1<<6
} else if p.As == AMOVH || p.As == AMOVHS {
o2 ^= (1 << 6)
}
case 74: /* bx $I */
ctxt.Diag("ABX $I")
case 75: /* bx O(R) */
aclass(ctxt, &p.To)
if ctxt.Instoffset != 0 {
ctxt.Diag("non-zero offset in ABX")
}
/*
o1 = oprrr(ctxt, AADD, p->scond) | immrot(0) | ((REGPC&15)<<16) | ((REGLINK&15)<<12); // mov PC, LR
o2 = (((p->scond&C_SCOND) ^ C_SCOND_XOR)<<28) | (0x12fff<<8) | (1<<4) | ((p->to.reg&15) << 0); // BX R
*/
// p->to.reg may be REGLINK
o1 = oprrr(ctxt, AADD, int(p.Scond))
o1 |= uint32(immrot(uint32(ctxt.Instoffset)))
o1 |= (uint32(p.To.Reg) & 15) << 16
o1 |= (REGTMP & 15) << 12
o2 = oprrr(ctxt, AADD, int(p.Scond)) | uint32(immrot(0)) | (REGPC&15)<<16 | (REGLINK&15)<<12 // mov PC, LR
o3 = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x12fff<<8 | 1<<4 | REGTMP&15 // BX Rtmp
case 76: /* bx O(R) when returning from fn*/
ctxt.Diag("ABXRET")
case 77: /* ldrex oreg,reg */
aclass(ctxt, &p.From)
if ctxt.Instoffset != 0 {
ctxt.Diag("offset must be zero in LDREX")
}
o1 = 0x19<<20 | 0xf9f
o1 |= (uint32(p.From.Reg) & 15) << 16
o1 |= (uint32(p.To.Reg) & 15) << 12
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 78: /* strex reg,oreg,reg */
aclass(ctxt, &p.From)
if ctxt.Instoffset != 0 {
ctxt.Diag("offset must be zero in STREX")
}
o1 = 0x18<<20 | 0xf90
o1 |= (uint32(p.From.Reg) & 15) << 16
o1 |= (uint32(p.Reg) & 15) << 0
o1 |= (uint32(p.To.Reg) & 15) << 12
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 80: /* fmov zfcon,freg */
if p.As == AMOVD {
o1 = 0xeeb00b00 // VMOV imm 64
o2 = oprrr(ctxt, ASUBD, int(p.Scond))
} else {
o1 = 0x0eb00a00 // VMOV imm 32
o2 = oprrr(ctxt, ASUBF, int(p.Scond))
}
v := int32(0x70) // 1.0
r := (int(p.To.Reg) & 15) << 0
// movf $1.0, r
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
o1 |= (uint32(r) & 15) << 12
o1 |= (uint32(v) & 0xf) << 0
o1 |= (uint32(v) & 0xf0) << 12
// subf r,r,r
o2 |= (uint32(r)&15)<<0 | (uint32(r)&15)<<16 | (uint32(r)&15)<<12
case 81: /* fmov sfcon,freg */
o1 = 0x0eb00a00 // VMOV imm 32
if p.As == AMOVD {
o1 = 0xeeb00b00 // VMOV imm 64
}
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
o1 |= (uint32(p.To.Reg) & 15) << 12
v := int32(chipfloat5(ctxt, p.From.Val.(float64)))
o1 |= (uint32(v) & 0xf) << 0
o1 |= (uint32(v) & 0xf0) << 12
case 82: /* fcmp freg,freg, */
o1 = oprrr(ctxt, p.As, int(p.Scond))
o1 |= (uint32(p.Reg)&15)<<12 | (uint32(p.From.Reg)&15)<<0
o2 = 0x0ef1fa10 // VMRS R15
o2 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 83: /* fcmp freg,, */
o1 = oprrr(ctxt, p.As, int(p.Scond))
o1 |= (uint32(p.From.Reg)&15)<<12 | 1<<16
o2 = 0x0ef1fa10 // VMRS R15
o2 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 84: /* movfw freg,freg - truncate float-to-fix */
o1 = oprrr(ctxt, p.As, int(p.Scond))
o1 |= (uint32(p.From.Reg) & 15) << 0
o1 |= (uint32(p.To.Reg) & 15) << 12
case 85: /* movwf freg,freg - fix-to-float */
o1 = oprrr(ctxt, p.As, int(p.Scond))
o1 |= (uint32(p.From.Reg) & 15) << 0
o1 |= (uint32(p.To.Reg) & 15) << 12
// macro for movfw freg,FTMP; movw FTMP,reg
case 86: /* movfw freg,reg - truncate float-to-fix */
o1 = oprrr(ctxt, p.As, int(p.Scond))
o1 |= (uint32(p.From.Reg) & 15) << 0
o1 |= (FREGTMP & 15) << 12
o2 = oprrr(ctxt, -AMOVFW, int(p.Scond))
o2 |= (FREGTMP & 15) << 16
o2 |= (uint32(p.To.Reg) & 15) << 12
// macro for movw reg,FTMP; movwf FTMP,freg
case 87: /* movwf reg,freg - fix-to-float */
o1 = oprrr(ctxt, -AMOVWF, int(p.Scond))
o1 |= (uint32(p.From.Reg) & 15) << 12
o1 |= (FREGTMP & 15) << 16
o2 = oprrr(ctxt, p.As, int(p.Scond))
o2 |= (FREGTMP & 15) << 0
o2 |= (uint32(p.To.Reg) & 15) << 12
case 88: /* movw reg,freg */
o1 = oprrr(ctxt, -AMOVWF, int(p.Scond))
o1 |= (uint32(p.From.Reg) & 15) << 12
o1 |= (uint32(p.To.Reg) & 15) << 16
case 89: /* movw freg,reg */
o1 = oprrr(ctxt, -AMOVFW, int(p.Scond))
o1 |= (uint32(p.From.Reg) & 15) << 16
o1 |= (uint32(p.To.Reg) & 15) << 12
case 90: /* tst reg */
o1 = oprrr(ctxt, -ACMP, int(p.Scond))
o1 |= (uint32(p.From.Reg) & 15) << 16
case 91: /* ldrexd oreg,reg */
aclass(ctxt, &p.From)
if ctxt.Instoffset != 0 {
ctxt.Diag("offset must be zero in LDREX")
}
o1 = 0x1b<<20 | 0xf9f
o1 |= (uint32(p.From.Reg) & 15) << 16
o1 |= (uint32(p.To.Reg) & 15) << 12
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 92: /* strexd reg,oreg,reg */
aclass(ctxt, &p.From)
if ctxt.Instoffset != 0 {
ctxt.Diag("offset must be zero in STREX")
}
o1 = 0x1a<<20 | 0xf90
o1 |= (uint32(p.From.Reg) & 15) << 16
o1 |= (uint32(p.Reg) & 15) << 0
o1 |= (uint32(p.To.Reg) & 15) << 12
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 93: /* movb/movh/movhu addr,R -> ldrsb/ldrsh/ldrh */
o1 = omvl(ctxt, p, &p.From, REGTMP)
if o1 == 0 {
break
}
o2 = olhr(ctxt, 0, REGTMP, int(p.To.Reg), int(p.Scond))
if p.As == AMOVB || p.As == AMOVBS {
o2 ^= 1<<5 | 1<<6
} else if p.As == AMOVH || p.As == AMOVHS {
o2 ^= (1 << 6)
}
if o.flag&LPCREL != 0 {
o3 = o2
o2 = oprrr(ctxt, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12
}
case 94: /* movh/movhu R,addr -> strh */
o1 = omvl(ctxt, p, &p.To, REGTMP)
if o1 == 0 {
break
}
o2 = oshr(ctxt, int(p.From.Reg), 0, REGTMP, int(p.Scond))
if o.flag&LPCREL != 0 {
o3 = o2
o2 = oprrr(ctxt, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12
}
case 95: /* PLD off(reg) */
o1 = 0xf5d0f000
o1 |= (uint32(p.From.Reg) & 15) << 16
if p.From.Offset < 0 {
o1 &^= (1 << 23)
o1 |= uint32((-p.From.Offset) & 0xfff)
} else {
o1 |= uint32(p.From.Offset & 0xfff)
}
// This is supposed to be something that stops execution.
// It's not supposed to be reached, ever, but if it is, we'd
// like to be able to tell how we got there. Assemble as
// 0xf7fabcfd which is guaranteed to raise undefined instruction
// exception.
case 96: /* UNDEF */
o1 = 0xf7fabcfd
case 97: /* CLZ Rm, Rd */
o1 = oprrr(ctxt, p.As, int(p.Scond))
o1 |= (uint32(p.To.Reg) & 15) << 12
o1 |= (uint32(p.From.Reg) & 15) << 0
case 98: /* MULW{T,B} Rs, Rm, Rd */
o1 = oprrr(ctxt, p.As, int(p.Scond))
o1 |= (uint32(p.To.Reg) & 15) << 16
o1 |= (uint32(p.From.Reg) & 15) << 8
o1 |= (uint32(p.Reg) & 15) << 0
case 99: /* MULAW{T,B} Rs, Rm, Rn, Rd */
o1 = oprrr(ctxt, p.As, int(p.Scond))
o1 |= (uint32(p.To.Reg) & 15) << 12
o1 |= (uint32(p.From.Reg) & 15) << 8
o1 |= (uint32(p.Reg) & 15) << 0
o1 |= uint32((p.To.Offset & 15) << 16)
// DATABUNDLE: BKPT $0x5be0, signify the start of NaCl data bundle;
// DATABUNDLEEND: zero width alignment marker
case 100:
if p.As == ADATABUNDLE {
o1 = 0xe125be70
}
}
out[0] = o1
out[1] = o2
out[2] = o3
out[3] = o4
out[4] = o5
out[5] = o6
return
}
func mov(ctxt *obj.Link, p *obj.Prog) uint32 {
aclass(ctxt, &p.From)
o1 := oprrr(ctxt, p.As, int(p.Scond))
o1 |= uint32(p.From.Offset)
rt := int(p.To.Reg)
if p.To.Type == obj.TYPE_NONE {
rt = 0
}
r := int(p.Reg)
if p.As == AMOVW || p.As == AMVN {
r = 0
} else if r == 0 {
r = rt
}
o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12
return o1
}
func oprrr(ctxt *obj.Link, a obj.As, sc int) uint32 {
o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28
if sc&C_SBIT != 0 {
o |= 1 << 20
}
if sc&(C_PBIT|C_WBIT) != 0 {
ctxt.Diag(".nil/.W on dp instruction")
}
switch a {
case AMULU, AMUL:
return o | 0x0<<21 | 0x9<<4
case AMULA:
return o | 0x1<<21 | 0x9<<4
case AMULLU:
return o | 0x4<<21 | 0x9<<4
case AMULL:
return o | 0x6<<21 | 0x9<<4
case AMULALU:
return o | 0x5<<21 | 0x9<<4
case AMULAL:
return o | 0x7<<21 | 0x9<<4
case AAND:
return o | 0x0<<21
case AEOR:
return o | 0x1<<21
case ASUB:
return o | 0x2<<21
case ARSB:
return o | 0x3<<21
case AADD:
return o | 0x4<<21
case AADC:
return o | 0x5<<21
case ASBC:
return o | 0x6<<21
case ARSC:
return o | 0x7<<21
case ATST:
return o | 0x8<<21 | 1<<20
case ATEQ:
return o | 0x9<<21 | 1<<20
case ACMP:
return o | 0xa<<21 | 1<<20
case ACMN:
return o | 0xb<<21 | 1<<20
case AORR:
return o | 0xc<<21
case AMOVB, AMOVH, AMOVW:
return o | 0xd<<21
case ABIC:
return o | 0xe<<21
case AMVN:
return o | 0xf<<21
case ASLL:
return o | 0xd<<21 | 0<<5
case ASRL:
return o | 0xd<<21 | 1<<5
case ASRA:
return o | 0xd<<21 | 2<<5
case ASWI:
return o | 0xf<<24
case AADDD:
return o | 0xe<<24 | 0x3<<20 | 0xb<<8 | 0<<4
case AADDF:
return o | 0xe<<24 | 0x3<<20 | 0xa<<8 | 0<<4
case ASUBD:
return o | 0xe<<24 | 0x3<<20 | 0xb<<8 | 4<<4
case ASUBF:
return o | 0xe<<24 | 0x3<<20 | 0xa<<8 | 4<<4
case AMULD:
return o | 0xe<<24 | 0x2<<20 | 0xb<<8 | 0<<4
case AMULF:
return o | 0xe<<24 | 0x2<<20 | 0xa<<8 | 0<<4
case ADIVD:
return o | 0xe<<24 | 0x8<<20 | 0xb<<8 | 0<<4
case ADIVF:
return o | 0xe<<24 | 0x8<<20 | 0xa<<8 | 0<<4
case ASQRTD:
return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xb<<8 | 0xc<<4
case ASQRTF:
return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xa<<8 | 0xc<<4
case AABSD:
return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xb<<8 | 0xc<<4
case AABSF:
return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xa<<8 | 0xc<<4
case ANEGD:
return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xb<<8 | 0x4<<4
case ANEGF:
return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xa<<8 | 0x4<<4
case ACMPD:
return o | 0xe<<24 | 0xb<<20 | 4<<16 | 0xb<<8 | 0xc<<4
case ACMPF:
return o | 0xe<<24 | 0xb<<20 | 4<<16 | 0xa<<8 | 0xc<<4
case AMOVF:
return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xa<<8 | 4<<4
case AMOVD:
return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xb<<8 | 4<<4
case AMOVDF:
return o | 0xe<<24 | 0xb<<20 | 7<<16 | 0xa<<8 | 0xc<<4 | 1<<8 // dtof
case AMOVFD:
return o | 0xe<<24 | 0xb<<20 | 7<<16 | 0xa<<8 | 0xc<<4 | 0<<8 // dtof
case AMOVWF:
if sc&C_UBIT == 0 {
o |= 1 << 7 /* signed */
}
return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 0<<18 | 0<<8 // toint, double
case AMOVWD:
if sc&C_UBIT == 0 {
o |= 1 << 7 /* signed */
}
return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 0<<18 | 1<<8 // toint, double
case AMOVFW:
if sc&C_UBIT == 0 {
o |= 1 << 16 /* signed */
}
return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 1<<18 | 0<<8 | 1<<7 // toint, double, trunc
case AMOVDW:
if sc&C_UBIT == 0 {
o |= 1 << 16 /* signed */
}
return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 1<<18 | 1<<8 | 1<<7 // toint, double, trunc
case -AMOVWF: // copy WtoF
return o | 0xe<<24 | 0x0<<20 | 0xb<<8 | 1<<4
case -AMOVFW: // copy FtoW
return o | 0xe<<24 | 0x1<<20 | 0xb<<8 | 1<<4
case -ACMP: // cmp imm
return o | 0x3<<24 | 0x5<<20
// CLZ doesn't support .nil
case ACLZ:
return o&(0xf<<28) | 0x16f<<16 | 0xf1<<4
case AMULWT:
return o&(0xf<<28) | 0x12<<20 | 0xe<<4
case AMULWB:
return o&(0xf<<28) | 0x12<<20 | 0xa<<4
case AMULAWT:
return o&(0xf<<28) | 0x12<<20 | 0xc<<4
case AMULAWB:
return o&(0xf<<28) | 0x12<<20 | 0x8<<4
case ABL: // BLX REG
return o&(0xf<<28) | 0x12fff3<<4
}
ctxt.Diag("bad rrr %d", a)
prasm(ctxt.Curp)
return 0
}
func opbra(ctxt *obj.Link, p *obj.Prog, a obj.As, sc int) uint32 {
if sc&(C_SBIT|C_PBIT|C_WBIT) != 0 {
ctxt.Diag("%v: .nil/.nil/.W on bra instruction", p)
}
sc &= C_SCOND
sc ^= C_SCOND_XOR
if a == ABL || a == obj.ADUFFZERO || a == obj.ADUFFCOPY {
return uint32(sc)<<28 | 0x5<<25 | 0x1<<24
}
if sc != 0xe {
ctxt.Diag("%v: .COND on bcond instruction", p)
}
switch a {
case ABEQ:
return 0x0<<28 | 0x5<<25
case ABNE:
return 0x1<<28 | 0x5<<25
case ABCS:
return 0x2<<28 | 0x5<<25
case ABHS:
return 0x2<<28 | 0x5<<25
case ABCC:
return 0x3<<28 | 0x5<<25
case ABLO:
return 0x3<<28 | 0x5<<25
case ABMI:
return 0x4<<28 | 0x5<<25
case ABPL:
return 0x5<<28 | 0x5<<25
case ABVS:
return 0x6<<28 | 0x5<<25
case ABVC:
return 0x7<<28 | 0x5<<25
case ABHI:
return 0x8<<28 | 0x5<<25
case ABLS:
return 0x9<<28 | 0x5<<25
case ABGE:
return 0xa<<28 | 0x5<<25
case ABLT:
return 0xb<<28 | 0x5<<25
case ABGT:
return 0xc<<28 | 0x5<<25
case ABLE:
return 0xd<<28 | 0x5<<25
case AB:
return 0xe<<28 | 0x5<<25
}
ctxt.Diag("bad bra %v", a)
prasm(ctxt.Curp)
return 0
}
func olr(ctxt *obj.Link, v int32, b int, r int, sc int) uint32 {
if sc&C_SBIT != 0 {
ctxt.Diag(".nil on LDR/STR instruction")
}
o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28
if sc&C_PBIT == 0 {
o |= 1 << 24
}
if sc&C_UBIT == 0 {
o |= 1 << 23
}
if sc&C_WBIT != 0 {
o |= 1 << 21
}
o |= 1<<26 | 1<<20
if v < 0 {
if sc&C_UBIT != 0 {
ctxt.Diag(".U on neg offset")
}
v = -v
o ^= 1 << 23
}
if v >= 1<<12 || v < 0 {
ctxt.Diag("literal span too large: %d (R%d)\n%v", v, b, ctxt.Printp)
}
o |= uint32(v)
o |= (uint32(b) & 15) << 16
o |= (uint32(r) & 15) << 12
return o
}
func olhr(ctxt *obj.Link, v int32, b int, r int, sc int) uint32 {
if sc&C_SBIT != 0 {
ctxt.Diag(".nil on LDRH/STRH instruction")
}
o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28
if sc&C_PBIT == 0 {
o |= 1 << 24
}
if sc&C_WBIT != 0 {
o |= 1 << 21
}
o |= 1<<23 | 1<<20 | 0xb<<4
if v < 0 {
v = -v
o ^= 1 << 23
}
if v >= 1<<8 || v < 0 {
ctxt.Diag("literal span too large: %d (R%d)\n%v", v, b, ctxt.Printp)
}
o |= uint32(v)&0xf | (uint32(v)>>4)<<8 | 1<<22
o |= (uint32(b) & 15) << 16
o |= (uint32(r) & 15) << 12
return o
}
func osr(ctxt *obj.Link, a obj.As, r int, v int32, b int, sc int) uint32 {
o := olr(ctxt, v, b, r, sc) ^ (1 << 20)
if a != AMOVW {
o |= 1 << 22
}
return o
}
func oshr(ctxt *obj.Link, r int, v int32, b int, sc int) uint32 {
o := olhr(ctxt, v, b, r, sc) ^ (1 << 20)
return o
}
func osrr(ctxt *obj.Link, r int, i int, b int, sc int) uint32 {
return olr(ctxt, int32(i), b, r, sc) ^ (1<<25 | 1<<20)
}
func oshrr(ctxt *obj.Link, r int, i int, b int, sc int) uint32 {
return olhr(ctxt, int32(i), b, r, sc) ^ (1<<22 | 1<<20)
}
func olrr(ctxt *obj.Link, i int, b int, r int, sc int) uint32 {
return olr(ctxt, int32(i), b, r, sc) ^ (1 << 25)
}
func olhrr(ctxt *obj.Link, i int, b int, r int, sc int) uint32 {
return olhr(ctxt, int32(i), b, r, sc) ^ (1 << 22)
}
func ofsr(ctxt *obj.Link, a obj.As, r int, v int32, b int, sc int, p *obj.Prog) uint32 {
if sc&C_SBIT != 0 {
ctxt.Diag(".nil on FLDR/FSTR instruction: %v", p)
}
o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28
if sc&C_PBIT == 0 {
o |= 1 << 24
}
if sc&C_WBIT != 0 {
o |= 1 << 21
}
o |= 6<<25 | 1<<24 | 1<<23 | 10<<8
if v < 0 {
v = -v
o ^= 1 << 23
}
if v&3 != 0 {
ctxt.Diag("odd offset for floating point op: %d\n%v", v, p)
} else if v >= 1<<10 || v < 0 {
ctxt.Diag("literal span too large: %d\n%v", v, p)
}
o |= (uint32(v) >> 2) & 0xFF
o |= (uint32(b) & 15) << 16
o |= (uint32(r) & 15) << 12
switch a {
default:
ctxt.Diag("bad fst %v", a)
fallthrough
case AMOVD:
o |= 1 << 8
fallthrough
case AMOVF:
break
}
return o
}
func omvl(ctxt *obj.Link, p *obj.Prog, a *obj.Addr, dr int) uint32 {
var o1 uint32
if p.Pcond == nil {
aclass(ctxt, a)
v := immrot(^uint32(ctxt.Instoffset))
if v == 0 {
ctxt.Diag("missing literal")
prasm(p)
return 0
}
o1 = oprrr(ctxt, AMVN, int(p.Scond)&C_SCOND)
o1 |= uint32(v)
o1 |= (uint32(dr) & 15) << 12
} else {
v := int32(p.Pcond.Pc - p.Pc - 8)
o1 = olr(ctxt, v, REGPC, dr, int(p.Scond)&C_SCOND)
}
return o1
}
func chipzero5(ctxt *obj.Link, e float64) int {
// We use GOARM=7 to gate the use of VFPv3 vmov (imm) instructions.
if obj.GOARM < 7 || e != 0 {
return -1
}
return 0
}
func chipfloat5(ctxt *obj.Link, e float64) int {
// We use GOARM=7 to gate the use of VFPv3 vmov (imm) instructions.
if obj.GOARM < 7 {
return -1
}
ei := math.Float64bits(e)
l := uint32(ei)
h := uint32(ei >> 32)
if l != 0 || h&0xffff != 0 {
return -1
}
h1 := h & 0x7fc00000
if h1 != 0x40000000 && h1 != 0x3fc00000 {
return -1
}
n := 0
// sign bit (a)
if h&0x80000000 != 0 {
n |= 1 << 7
}
// exp sign bit (b)
if h1 == 0x3fc00000 {
n |= 1 << 6
}
// rest of exp and mantissa (cd-efgh)
n |= int((h >> 16) & 0x3f)
//print("match %.8lux %.8lux %d\n", l, h, n);
return n
}
func nocache(p *obj.Prog) {
p.Optab = 0
p.From.Class = 0
if p.From3 != nil {
p.From3.Class = 0
}
p.To.Class = 0
}