5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2024-11-10 05:20:25 +00:00
matterbridge/vendor/modernc.org/cc/v3/check.go

5269 lines
146 KiB
Go
Raw Normal View History

2022-01-30 23:27:37 +00:00
// Copyright 2019 The CC Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cc // import "modernc.org/cc/v3"
import (
"fmt"
"go/token"
"math"
"math/big"
"math/bits"
"path/filepath"
"strconv"
"strings"
"modernc.org/mathutil"
"modernc.org/strutil"
)
const longDoublePrec = 256
type mode = int
var (
idBuiltinConstantPImpl = dict.sid("__builtin_constant_p_impl")
idClosure = dict.sid("0closure") // Must be invalid indentifier.
idWcharT = dict.sid("wchar_t")
idWinWchar = dict.sid("WCHAR")
_ fmt.State
)
const (
// [2], 6.6 Constant expressions, 6
//
// An integer constant expression shall have integer type and shall
// only have operands that are integer constants, enumeration
// constants, character constants, sizeof expressions whose results are
// integer constants, _Alignof expressions, and floating constants that
// are the immediate operands of casts. Cast operators in an integer
// constant expression shall only convert arithmetic types to integer
// types, except as part of an operand to the sizeof or _Alignof
// operator.
mIntConstExpr = 1 << iota
mIntConstExprFloat // As mIntConstExpr plus accept floating point constants.
mIntConstExprAnyCast // As mIntConstExpr plus accept any cast.
)
// Parameter represents a function parameter.
type Parameter struct {
d *Declarator
typ Type
}
// NewParameter returns a newly created parameter
func NewParameter(d *Declarator, t Type) *Parameter {
return &Parameter{d, t}
}
func (p *Parameter) Declarator() *Declarator { return p.d }
func (p *Parameter) Name() StringID { return p.d.Name() }
func (p *Parameter) Type() Type { return p.typ }
func (n *TranslationUnit) check(ctx *context) {
for n := n; n != nil; n = n.TranslationUnit {
n.ExternalDeclaration.check(ctx)
}
for ; n != nil; n = n.TranslationUnit {
n.ExternalDeclaration.checkFnBodies(ctx)
}
}
func (n *ExternalDeclaration) checkFnBodies(ctx *context) {
if n == nil {
return
}
switch n.Case {
case ExternalDeclarationFuncDef: // FunctionDefinition
n.FunctionDefinition.checkBody(ctx)
}
}
// https://gcc.gnu.org/onlinedocs/gcc/Inline.html
//
// If you specify both inline and extern in the function definition, then the
// definition is used only for inlining. In no case is the function compiled on
// its own, not even if you refer to its address explicitly. Such an address
// becomes an external reference, as if you had only declared the function, and
// had not defined it.
//
// This combination of inline and extern has almost the effect of a macro. The
// way to use it is to put a function definition in a header file with these
// keywords, and put another copy of the definition (lacking inline and extern)
// in a library file. The definition in the header file causes most calls to
// the function to be inlined. If any uses of the function remain, they refer
// to the single copy in the library.
func (n *Declarator) isExternInline() bool {
return n.IsExtern() && n.Type() != nil && n.Type().Inline()
}
// DeclarationSpecifiers Declarator DeclarationList CompoundStatement
func (n *FunctionDefinition) checkBody(ctx *context) {
if n == nil {
return
}
if n.checked {
return
}
n.checked = true
if n.Declarator.isExternInline() && !ctx.cfg.CheckExternInlineFnBodies {
return
}
ctx.checkFn = n
rd := ctx.readDelta
ctx.readDelta = 1
n.CompoundStatement.check(ctx)
ctx.checkFn = nil
for k, v := range n.ComputedGotos {
if _, ok := n.Labels[k]; !ok {
ctx.errNode(v, "label %s undefined", k)
}
}
for k, v := range n.Gotos {
if _, ok := n.Labels[k]; !ok {
ctx.errNode(v, "label %s undefined", k)
}
}
for _, n := range n.InitDeclarators {
d := n.Declarator
if d.Type().IsIncomplete() && d.Linkage != External {
ctx.errNode(d, "declarator has incomplete type")
}
if ctx.cfg.RejectUninitializedDeclarators && d.Linkage == None && d.Write == 0 && !d.AddressTaken && d.Read != 0 {
switch d.Type().Kind() {
case Array, Struct, Union, Invalid:
// nop
default:
ctx.errNode(d, "%s may be used uninitialized in this function", d.Name())
}
}
}
for _, n := range n.CompositeLiterals {
switch t := n.Operand.Type(); t.Kind() {
case Invalid:
ctx.errNode(n, "composite literal has invalid type")
default:
if t.IsIncomplete() {
ctx.errNode(n, "composite literal has incomplete type")
}
}
}
ctx.readDelta = rd
}
func (n *ExternalDeclaration) check(ctx *context) {
if n == nil {
return
}
switch n.Case {
case ExternalDeclarationFuncDef: // FunctionDefinition
n.FunctionDefinition.checkDeclarator(ctx)
case ExternalDeclarationDecl: // Declaration
n.Declaration.check(ctx, true)
case ExternalDeclarationAsm: // AsmFunctionDefinition
n.AsmFunctionDefinition.check(ctx)
case ExternalDeclarationAsmStmt: // AsmStatement
n.AsmStatement.check(ctx)
case ExternalDeclarationEmpty: // ';'
// nop
case ExternalDeclarationPragma: // PragmaSTDC
n.PragmaSTDC.check(ctx)
default:
panic(todo(""))
}
}
func (n *PragmaSTDC) check(ctx *context) {
// nop
}
func (n *AsmFunctionDefinition) check(ctx *context) {
if n == nil {
return
}
typ, inline, noret := n.DeclarationSpecifiers.check(ctx, false)
typ.setFnSpecs(inline, noret)
n.Declarator.check(ctx, n.DeclarationSpecifiers, typ, true)
n.AsmStatement.check(ctx)
}
func (n *AsmStatement) check(ctx *context) {
if n == nil {
return
}
n.Asm.check(ctx)
n.AttributeSpecifierList.check(ctx, nil)
}
func (n *Declaration) check(ctx *context, tld bool) {
if n == nil {
return
}
typ, _, _ := n.DeclarationSpecifiers.check(ctx, false)
n.InitDeclaratorList.check(ctx, n.DeclarationSpecifiers, typ, tld)
}
func (n *InitDeclaratorList) check(ctx *context, td typeDescriptor, typ Type, tld bool) {
for ; n != nil; n = n.InitDeclaratorList {
n.AttributeSpecifierList.check(ctx, typ.baseP())
n.InitDeclarator.check(ctx, td, typ, tld)
}
}
func (n *InitDeclarator) check(ctx *context, td typeDescriptor, typ Type, tld bool) {
if n == nil {
return
}
if f := ctx.checkFn; f != nil {
f.InitDeclarators = append(f.InitDeclarators, n)
}
if attr := n.AttributeSpecifierList.check(ctx, typ.baseP()); len(attr) != 0 {
typ = &attributedType{typ, attr}
}
switch n.Case {
case InitDeclaratorDecl: // Declarator AttributeSpecifierList
n.Declarator.check(ctx, td, typ, tld)
case InitDeclaratorInit: // Declarator AttributeSpecifierList '=' Initializer
typ := n.Declarator.check(ctx, td, typ, tld)
n.Declarator.hasInitializer = true
n.Declarator.Write++
n.Initializer.check(ctx, &n.Initializer.list, typ, n.Declarator.StorageClass, nil, 0, nil, nil, false)
n.Initializer.setConstZero()
n.initializer = &InitializerValue{typ: typ, initializer: n.Initializer}
if ctx.cfg.TrackAssignments {
setLHS(map[*Declarator]struct{}{n.Declarator: {}}, n.Initializer)
}
default:
panic(todo(""))
}
}
func (n *Initializer) setConstZero() {
switch n.Case {
case InitializerExpr: // AssignmentExpression
if op := n.AssignmentExpression.Operand; op != nil {
n.isConst = op.IsConst()
n.isZero = op.IsZero()
}
case InitializerInitList: // '{' InitializerList ',' '}'
li := n.InitializerList
li.setConstZero()
n.isConst = li.IsConst()
n.isZero = li.IsZero()
default:
panic(todo("%v:", n.Position()))
}
}
func (n *InitializerList) setConstZero() {
if n == nil {
return
}
n0 := n
n0.isConst = true
n0.isZero = true
for ; n != nil; n = n.InitializerList {
in := n.Initializer
in.setConstZero()
n0.isConst = n0.isConst && in.isConst
n0.isZero = n0.isZero && in.isZero
}
}
// [0], 6.7.8 Initialization
func (n *Initializer) check(ctx *context, list *[]*Initializer, t Type, sc StorageClass, fld Field, off uintptr, il *InitializerList, designatorList *DesignatorList, inList bool) *InitializerList {
// trc("==== %v: case %v, t %v, off %v, designatorList != nil %v, inList %v", n.Position(), n.Case, t.Alias(), off, designatorList != nil, inList)
// if fld != nil {
// trc("\tfld %q", fld.Name())
// }
// 3 - The type of the entity to be initialized shall be an array of
// unknown size or an object type that is not a variable length array
// type.
if t.Kind() == Array && t.IsVLA() {
ctx.errNode(n, "cannot initialize a variable length array: %v", t)
if il != nil {
return il.InitializerList
}
return nil
}
defer func(d int) { ctx.readDelta = d }(ctx.readDelta)
ctx.readDelta = 1
n.typ = t
single := n.single()
var op Operand
if single != nil {
op = single.AssignmentExpression.check(ctx, false)
single.typ = t
single.Field = fld
single.Offset = off
}
// 11: The initializer for a scalar shall be a single expression, optionally
// enclosed in braces. The initial value of the object is that of the
// expression (after conversion); the same type constraints and conversions as
// for simple assignment apply, taking the type of the scalar to be the
// unqualified version of its declared type.
if t.IsScalarType() && single != nil {
if designatorList != nil {
panic(todo("", n.Position()))
}
//TODO check compatible
*list = append(*list, single)
switch {
case t.Kind() == op.Type().Kind():
single.AssignmentExpression.InitializerOperand = op
default:
single.AssignmentExpression.InitializerOperand = op.convertTo(ctx, n, t)
}
if il != nil {
return il.InitializerList
}
return nil
}
// 12: The rest of this subclause deals with initializers for objects that have
// aggregate or union type.
k := t.Kind()
// 13: The initializer for a structure or union object that has automatic
// storage duration shall be either an initializer list as described below, or
// a single expression that has compatible structure or union type. In the
// latter case, the initial value of the object, including unnamed members, is
// that of the expression.
if n.Case == InitializerExpr && sc == Automatic && (k == Struct || k == Union || k == Vector) && t.IsCompatible(op.Type()) {
if designatorList != nil {
panic(todo("", n.Position()))
}
*list = append(*list, single)
if il != nil {
return il.InitializerList
}
return nil
}
if k == Array && single != nil {
et := t.Elem()
switch {
case isCharType(et):
// 14: An array of character type may be initialized by a character string
// literal, optionally enclosed in braces. Successive characters of the
// character string literal (including the terminating null character if there
// is room or if the array is of unknown size) initialize the elements of the
// array.
if x, ok := op.Value().(StringValue); ok {
if designatorList != nil {
panic(todo("", n.Position()))
}
*list = append(*list, single)
str := StringID(x).String()
if t.IsIncomplete() {
t.setLen(uintptr(len(str)) + 1)
}
if il != nil {
return il.InitializerList
}
return nil
}
case isWCharType(et):
// 15: An array with element type compatible with wchar_t may be initialized by
// a wide string literal, optionally enclosed in braces. Successive wide
// characters of the wide string literal (including the terminating null wide
// character if there is room or if the array is of unknown size) initialize
// the elements of the array.
if x, ok := op.Value().(WideStringValue); ok {
if designatorList != nil {
panic(todo("", n.Position()))
}
*list = append(*list, single)
str := []rune(StringID(x).String())
if t.IsIncomplete() {
t.setLen(uintptr(len(str)) + 1)
}
if il != nil {
panic(todo(""))
}
return nil
}
}
}
// 16: Otherwise, the initializer for an object that has aggregate or union
// type shall be a brace-enclosed list of initializers for the elements or
// named members.
if n.Case == InitializerExpr {
if il != nil {
switch t.Kind() {
case Array:
return il.checkArray(ctx, list, t, sc, off, designatorList, inList)
case Struct:
return il.checkStruct(ctx, list, t, sc, off, designatorList, inList)
case Union:
return il.checkUnion(ctx, list, t, sc, off, designatorList, inList)
case Vector:
return il.InitializerList //TODO
default:
panic(todo("", n.Position(), t, t.Kind()))
}
}
var l *InitializerList
Inspect(n.AssignmentExpression, func(m Node, b bool) bool {
if x, ok := m.(*PostfixExpression); ok && x.Case == PostfixExpressionComplit {
if !b {
return true
}
if l == nil {
l = x.InitializerList
return true
}
l = nil
return false
}
return true
})
if l != nil {
l.check(ctx, list, t, sc, off, designatorList, inList)
return nil
}
ctx.errNode(n, "initializer for an object that has aggregate or union type shall be a brace-enclosed list of initializers for the elements or named members: %v", t)
return nil
}
n.InitializerList.check(ctx, list, t, sc, off, designatorList, inList)
if il != nil {
return il.InitializerList
}
return nil
}
func (n *InitializerList) checkArray(ctx *context, list *[]*Initializer, t Type, sc StorageClass, off uintptr, designatorList *DesignatorList, inList bool) *InitializerList {
elem := t.Elem()
esz := elem.Size()
length := t.Len()
var i, maxI uintptr
nestedDesignator := designatorList != nil
retOnDesignator := false
loop:
for n != nil {
switch {
case retOnDesignator && n.Designation != nil:
return n
case designatorList == nil && !inList && n.Designation != nil:
designatorList = n.Designation.DesignatorList
fallthrough
case designatorList != nil:
d := designatorList.Designator
designatorList = designatorList.DesignatorList
switch d.Case {
case DesignatorIndex: // '[' ConstantExpression ']'
switch x := d.ConstantExpression.check(ctx, ctx.mode|mIntConstExpr, false).Value().(type) {
case Int64Value:
i = uintptr(x)
case Uint64Value:
i = uintptr(x)
default:
panic(todo("%v: %T", n.Position(), x))
}
if !inList && i > maxI {
maxI = i
}
case DesignatorField: // '.' IDENTIFIER
panic(todo("", n.Position(), d.Position()))
case DesignatorField2: // IDENTIFIER ':'
panic(todo("", n.Position(), d.Position()))
default:
panic(todo(""))
}
n = n.Initializer.check(ctx, list, elem, sc, nil, off+i*esz, n, designatorList, designatorList != nil)
designatorList = nil
if nestedDesignator {
retOnDesignator = true
}
i++
default:
if !t.IsIncomplete() && i >= length {
break loop
}
if i > maxI {
maxI = i
}
n = n.Initializer.check(ctx, list, elem, sc, nil, off+i*esz, n, nil, inList)
i++
}
}
if t.IsIncomplete() {
t.setLen(maxI + 1)
}
return n
}
func (n *InitializerList) checkStruct(ctx *context, list *[]*Initializer, t Type, sc StorageClass, off uintptr, designatorList *DesignatorList, inList bool) *InitializerList {
// trc("==== (A) %v: t %v, off %v, dl %v, inList %v", n.Position(), t, off, designatorList != nil, inList)
// defer trc("==== (Z) %v: t %v, off %v, dl %v, inList %v", n.Position(), t, off, designatorList != nil, inList)
t = t.underlyingType()
// trc("%v: %v, off %v", n.Position(), t, off) //TODO-
nf := t.NumField()
i := []int{0}
var f Field
nestedDesignator := designatorList != nil
retOnDesignator := false
for n != nil {
switch {
case retOnDesignator && n.Designation != nil:
return n
case designatorList == nil && !inList && n.Designation != nil:
designatorList = n.Designation.DesignatorList
fallthrough
case designatorList != nil:
d := designatorList.Designator
designatorList = designatorList.DesignatorList
var nm StringID
switch d.Case {
case DesignatorIndex: // '[' ConstantExpression ']'
panic(todo("", n.Position(), d.Position()))
case DesignatorField: // '.' IDENTIFIER
nm = d.Token2.Value
case DesignatorField2: // IDENTIFIER ':'
nm = d.Token.Value
default:
panic(todo(""))
}
f, xa, ok := t.FieldByName2(nm)
if !ok {
panic(todo("%v: t %v %q", d.Position(), t, nm))
}
t0 := t
switch {
case len(xa) != 1:
var f2 Field
var off2 uintptr
for len(xa) != 1 {
f2 = t.FieldByIndex(xa[:1])
off2 += f2.Offset()
t = f2.Type()
xa = xa[1:]
}
n = n.Initializer.check(ctx, list, t, sc, f, off+off2, n, designatorList, designatorList != nil)
if t.Kind() == Union {
t = t0
}
default:
n = n.Initializer.check(ctx, list, f.Type(), sc, f, off+f.Offset(), n, designatorList, designatorList != nil)
}
designatorList = nil
if nestedDesignator {
retOnDesignator = true
}
i[0] = xa[0] + 1
default:
// [0], 6.7.8 Initialization
//
// 9 - Except where explicitly stated otherwise, for the
// purposes of this subclause unnamed members of objects of
// structure and union type do not participate in
// initialization. Unnamed members of structure objects have
// indeterminate value even after initialization.
for ; ; i[0]++ {
if i[0] >= nf {
return n
}
f = t.FieldByIndex(i)
if f.Name() != 0 || !f.Type().IsBitFieldType() {
n = n.Initializer.check(ctx, list, f.Type(), sc, f, off+f.Offset(), n, nil, inList)
i[0]++
break
}
}
}
}
return n
}
func spos(n Node) string {
p := n.Position()
p.Filename = filepath.Base(p.Filename)
return p.String()
}
func (n *InitializerList) checkUnion(ctx *context, list *[]*Initializer, t Type, sc StorageClass, off uintptr, designatorList *DesignatorList, inList bool) *InitializerList {
// trc("==== %v: t %v, off %v, dl %v, inList %v", n.Position(), t, off, designatorList != nil, inList)
t = t.underlyingType()
// trc("%v: %v, off %v", n.Position(), t, off) //TODO-
nf := t.NumField()
i := []int{0}
for pass := 0; n != nil; pass++ {
switch {
case designatorList == nil && !inList && n.Designation != nil:
designatorList = n.Designation.DesignatorList
fallthrough
case designatorList != nil:
d := designatorList.Designator
designatorList = designatorList.DesignatorList
var nm StringID
switch d.Case {
case DesignatorIndex: // '[' ConstantExpression ']'
panic(todo("", n.Position(), d.Position()))
case DesignatorField: // '.' IDENTIFIER
nm = d.Token2.Value
case DesignatorField2: // IDENTIFIER ':'
nm = d.Token.Value
default:
panic(todo(""))
}
f, xa, ok := t.FieldByName2(nm)
if !ok {
panic(todo("", d.Position()))
}
if !inList && pass == 0 {
n.Initializer.field0 = f
}
switch {
case len(xa) != 1:
var f2 Field
var off2 uintptr
for len(xa) != 1 {
f2 = t.FieldByIndex(xa[:1])
off2 += f2.Offset()
t = f2.Type()
xa = xa[1:]
}
next := n.Initializer.check(ctx, list, t, sc, f, off+off2+f.Offset(), n, designatorList, designatorList != nil)
if designatorList != nil && designatorList.DesignatorList != nil {
panic(todo("", n.Position(), d.Position()))
}
return next
default:
next := n.Initializer.check(ctx, list, f.Type(), sc, f, off+f.Offset(), n, designatorList, designatorList != nil)
if designatorList != nil && designatorList.DesignatorList != nil {
panic(todo("", n.Position(), d.Position()))
}
return next
}
default:
// [0], 6.7.8 Initialization
//
// 9 - Except where explicitly stated otherwise, for the
// purposes of this subclause unnamed members of objects of
// structure and union type do not participate in
// initialization. Unnamed members of structure objects have
// indeterminate value even after initialization.
for ; ; i[0]++ {
if i[0] >= nf {
panic(todo(""))
}
f := t.FieldByIndex(i)
if f.Name() != 0 || !f.Type().IsBitFieldType() {
next := n.Initializer.check(ctx, list, f.Type(), sc, f, off+f.Offset(), n, nil, inList)
return next
}
}
panic(todo("", n.Position()))
}
}
return nil
}
// Accept a single initializer, optionally enclosed in braces, but nested
// braces. Implements eg. [0]6.7.8.11.
//
// 42 // ok
// {42} // ok
// {{42}} // not ok
func (n *Initializer) single() *Initializer {
switch n.Case {
case InitializerExpr: // AssignmentExpression
return n
case InitializerInitList: // '{' InitializerList ',' '}'
if n.InitializerList == nil { //
return nil
}
if n.InitializerList.InitializerList == nil {
if in := n.InitializerList.Initializer; in.Case == InitializerExpr {
return in
}
}
}
return nil
}
// [0], 6.7.8 Initialization
func (n *InitializerList) check(ctx *context, list *[]*Initializer, t Type, sc StorageClass, off uintptr, designatorList *DesignatorList, inList bool) {
switch t.Kind() {
case Array, Vector:
if n == nil { // {}
if t.IsIncomplete() {
t.setLen(0)
}
return
}
n.checkArray(ctx, list, t, sc, off, designatorList, inList)
case Struct:
if n == nil { // {}
return
}
n.checkStruct(ctx, list, t, sc, off, designatorList, inList)
case Union:
if n == nil { // {}
return
}
n.checkUnion(ctx, list, t, sc, off, designatorList, inList)
default:
if n == nil || t == nil || t.Kind() == Invalid {
return
}
n.Initializer.check(ctx, list, t, sc, nil, off, nil, designatorList, inList)
}
}
func setLHS(lhs map[*Declarator]struct{}, rhs Node) {
inCall := 0
Inspect(rhs, func(n Node, enter bool) bool {
switch x := n.(type) {
case *PostfixExpression:
switch x.Case {
case PostfixExpressionCall: // PostfixExpression '(' ArgumentExpressionList ')'
switch {
case enter:
inCall++
if d := x.Declarator(); d != nil {
for v := range lhs {
d.setLHS(v)
}
}
default:
inCall--
}
}
case *PrimaryExpression:
if inCall != 0 || !enter {
break
}
if d := x.Declarator(); d != nil {
for v := range lhs {
d.setLHS(v)
}
}
}
return true
})
}
func (n *AssignmentExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
if n.Operand != nil {
return n.Operand
}
if ctx.cfg.TrackAssignments && n.AssignmentExpression != nil {
defer func() {
lhs := map[*Declarator]struct{}{}
Inspect(n.UnaryExpression, func(n Node, enter bool) bool {
if !enter {
return true
}
if x, ok := n.(*PrimaryExpression); ok {
lhs[x.Declarator()] = struct{}{}
}
return true
})
setLHS(lhs, n.AssignmentExpression)
}()
}
//TODO check for "modifiable lvalue" in left operand
n.Operand = noOperand
switch n.Case {
case AssignmentExpressionCond: // ConditionalExpression
n.Operand = n.ConditionalExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.ConditionalExpression.IsSideEffectsFree
case AssignmentExpressionAssign: // UnaryExpression '=' AssignmentExpression
l := n.UnaryExpression.check(ctx, isAsmArg)
if d := n.UnaryExpression.Declarator(); d != nil {
d.Read -= ctx.readDelta
}
if d := n.UnaryExpression.Operand.Declarator(); d != nil {
d.Write++
if l.Type().Kind() == Array && !d.IsParameter && l.Type().String() != "va_list" {
ctx.errNode(n.UnaryExpression, "assignment to expression with array type")
break
}
}
if !l.IsLValue() {
//TODO ctx.errNode(n.UnaryExpression, "expected lvalue")
break
}
r := n.AssignmentExpression.check(ctx, isAsmArg)
_ = r //TODO check assignability
n.Operand = l.(*lvalue).Operand
case AssignmentExpressionMul: // UnaryExpression "*=" AssignmentExpression
l := n.UnaryExpression.check(ctx, isAsmArg)
if d := n.UnaryExpression.Operand.Declarator(); d != nil {
d.SubjectOfAsgnOp = true
d.Read += ctx.readDelta
d.Write++
}
if !l.IsLValue() {
//TODO panic(n.Position().String()) // report error
break
}
r := n.AssignmentExpression.check(ctx, isAsmArg)
//TODO check assignability
if l.Type().IsArithmeticType() {
op, _ := usualArithmeticConversions(ctx, n, l, r, true)
n.promote = op.Type()
}
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: l.Type()}
case AssignmentExpressionDiv: // UnaryExpression "/=" AssignmentExpression
l := n.UnaryExpression.check(ctx, isAsmArg)
if d := n.UnaryExpression.Operand.Declarator(); d != nil {
d.SubjectOfAsgnOp = true
d.Read += ctx.readDelta
d.Write++
}
if !l.IsLValue() {
//TODO panic(n.Position().String()) // report error
break
}
r := n.AssignmentExpression.check(ctx, isAsmArg)
//TODO check assignability
if l.Type().IsArithmeticType() {
op, _ := usualArithmeticConversions(ctx, n, l, r, true)
n.promote = op.Type()
}
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: l.Type()}
case AssignmentExpressionMod: // UnaryExpression "%=" AssignmentExpression
l := n.UnaryExpression.check(ctx, isAsmArg)
if d := n.UnaryExpression.Operand.Declarator(); d != nil {
d.SubjectOfAsgnOp = true
d.Read += ctx.readDelta
d.Write++
}
if !l.IsLValue() {
//TODO panic(n.Position().String()) // report error
break
}
r := n.AssignmentExpression.check(ctx, isAsmArg)
//TODO check assignability
if l.Type().IsArithmeticType() {
op, _ := usualArithmeticConversions(ctx, n, l, r, true)
n.promote = op.Type()
}
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: l.Type()}
case AssignmentExpressionAdd: // UnaryExpression "+=" AssignmentExpression
l := n.UnaryExpression.check(ctx, isAsmArg)
if d := n.UnaryExpression.Operand.Declarator(); d != nil {
d.SubjectOfAsgnOp = true
d.Read += ctx.readDelta
d.Write++
}
if !l.IsLValue() {
//TODO panic(n.Position().String()) // report error
break
}
r := n.AssignmentExpression.check(ctx, isAsmArg)
//TODO check assignability
n.promote = n.UnaryExpression.Operand.Type()
if l.Type().IsArithmeticType() {
op, _ := usualArithmeticConversions(ctx, n, l, r, true)
n.promote = op.Type()
}
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: l.Type()}
case AssignmentExpressionSub: // UnaryExpression "-=" AssignmentExpression
l := n.UnaryExpression.check(ctx, isAsmArg)
if d := n.UnaryExpression.Operand.Declarator(); d != nil {
d.SubjectOfAsgnOp = true
d.Read += ctx.readDelta
d.Write++
}
if !l.IsLValue() {
//TODO panic(n.Position().String()) // report error
break
}
r := n.AssignmentExpression.check(ctx, isAsmArg)
//TODO check assignability
n.promote = n.UnaryExpression.Operand.Type()
if l.Type().IsArithmeticType() {
op, _ := usualArithmeticConversions(ctx, n, l, r, true)
n.promote = op.Type()
}
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: l.Type()}
case AssignmentExpressionLsh: // UnaryExpression "<<=" AssignmentExpression
l := n.UnaryExpression.check(ctx, isAsmArg)
if d := n.UnaryExpression.Operand.Declarator(); d != nil {
d.SubjectOfAsgnOp = true
d.Read += ctx.readDelta
d.Write++
}
if !l.IsLValue() {
//TODO panic(n.Position().String()) // report error
break
}
r := n.AssignmentExpression.check(ctx, isAsmArg)
//TODO check assignability
if !l.Type().IsIntegerType() || !r.Type().IsIntegerType() {
//TODO report error
break
}
n.promote = r.integerPromotion(ctx, n).Type()
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: l.Type()}).integerPromotion(ctx, n)
case AssignmentExpressionRsh: // UnaryExpression ">>=" AssignmentExpression
l := n.UnaryExpression.check(ctx, isAsmArg)
if d := n.UnaryExpression.Operand.Declarator(); d != nil {
d.SubjectOfAsgnOp = true
d.Read += ctx.readDelta
d.Write++
}
if !l.IsLValue() {
//TODO panic(n.Position().String()) // report error
break
}
r := n.AssignmentExpression.check(ctx, isAsmArg)
//TODO check assignability
if !l.Type().IsIntegerType() || !r.Type().IsIntegerType() {
//TODO report error
break
}
n.promote = r.integerPromotion(ctx, n).Type()
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: l.Type()}).integerPromotion(ctx, n)
case AssignmentExpressionAnd: // UnaryExpression "&=" AssignmentExpression
l := n.UnaryExpression.check(ctx, isAsmArg)
if d := n.UnaryExpression.Operand.Declarator(); d != nil {
d.SubjectOfAsgnOp = true
d.Read += ctx.readDelta
d.Write++
}
if !l.IsLValue() {
//TODO panic(n.Position().String()) // report error
break
}
r := n.AssignmentExpression.check(ctx, isAsmArg)
//TODO check assignability
if !l.Type().IsIntegerType() || !r.Type().IsIntegerType() {
//TODO report error
break
}
op, _ := usualArithmeticConversions(ctx, n, l, r, true)
n.promote = op.Type()
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: l.Type()}
case AssignmentExpressionXor: // UnaryExpression "^=" AssignmentExpression
l := n.UnaryExpression.check(ctx, isAsmArg)
if d := n.UnaryExpression.Operand.Declarator(); d != nil {
d.SubjectOfAsgnOp = true
d.Read += ctx.readDelta
d.Write++
}
if !l.IsLValue() {
//TODO panic(n.Position().String()) // report error
break
}
r := n.AssignmentExpression.check(ctx, isAsmArg)
//TODO check assignability
if !l.Type().IsIntegerType() || !r.Type().IsIntegerType() {
//TODO report error
break
}
op, _ := usualArithmeticConversions(ctx, n, l, r, true)
n.promote = op.Type()
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: l.Type()}
case AssignmentExpressionOr: // UnaryExpression "|=" AssignmentExpression
l := n.UnaryExpression.check(ctx, isAsmArg)
if d := n.UnaryExpression.Operand.Declarator(); d != nil {
d.SubjectOfAsgnOp = true
d.Read += ctx.readDelta
d.Write++
}
if !l.IsLValue() {
//TODO panic(n.Position().String()) // report error
break
}
r := n.AssignmentExpression.check(ctx, isAsmArg)
//TODO check assignability
if !l.Type().IsIntegerType() || !r.Type().IsIntegerType() {
//TODO report error
break
}
op, _ := usualArithmeticConversions(ctx, n, l, r, true)
n.promote = op.Type()
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: l.Type()}
default:
panic(todo(""))
}
return n.Operand
}
func (n *UnaryExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case UnaryExpressionPostfix: // PostfixExpression
n.Operand = n.PostfixExpression.check(ctx, false, isAsmArg)
n.IsSideEffectsFree = n.PostfixExpression.IsSideEffectsFree
case UnaryExpressionInc: // "++" UnaryExpression
op := n.UnaryExpression.check(ctx, isAsmArg)
if d := op.Declarator(); d != nil {
d.SubjectOfIncDec = true
d.Read += ctx.readDelta
d.Write++
}
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: op.Type()}
case UnaryExpressionDec: // "--" UnaryExpression
op := n.UnaryExpression.check(ctx, isAsmArg)
if d := op.Declarator(); d != nil {
d.SubjectOfIncDec = true
d.Read += ctx.readDelta
d.Write++
}
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: op.Type()}
case UnaryExpressionAddrof: // '&' CastExpression
ctx.not(n, mIntConstExpr)
op := n.CastExpression.addrOf(ctx)
n.IsSideEffectsFree = n.CastExpression.IsSideEffectsFree
if op.Type().IsBitFieldType() {
//TODO report error
break
}
d := n.CastExpression.Declarator()
if d != nil {
setAddressTaken(n, d, "'&' CastExpression")
if d.td.register() {
//TODO report error
}
}
// [0], 6.5.3.2
//
// The operand of the unary & operator shall be either a
// function designator, the result of a [] or unary * operator,
// or an lvalue that designates an object that is not a
// bit-field and is not declared with the register
// storage-class specifier.
//TODO
if x, ok := op.(*funcDesignator); ok {
n.Operand = x
break
}
n.Operand = op
case UnaryExpressionDeref: // '*' CastExpression
ctx.not(n, mIntConstExpr)
op := n.CastExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.CastExpression.IsSideEffectsFree
if x, ok := op.(*funcDesignator); ok {
n.Operand = x
break
}
if op.Type().Kind() == Function {
n.Operand = op
break
}
if op.Type().Decay().Kind() != Ptr {
//TODO report error
break
}
n.Operand = &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: op.Type().Elem()}}
case UnaryExpressionPlus: // '+' CastExpression
op := n.CastExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.CastExpression.IsSideEffectsFree
if !op.Type().IsArithmeticType() {
//TODO report error
break
}
if op.Type().IsIntegerType() {
op = op.integerPromotion(ctx, n)
}
n.Operand = op
case UnaryExpressionMinus: // '-' CastExpression
op := n.CastExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.CastExpression.IsSideEffectsFree
if op.Type().Kind() == Vector {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: op.Type()}
break
}
if !op.Type().IsArithmeticType() {
//TODO report error
break
}
if op.Type().IsIntegerType() {
op = op.integerPromotion(ctx, n)
}
if v := op.Value(); v != nil {
op = (&operand{abi: &ctx.cfg.ABI, typ: op.Type(), value: v.neg()}).normalize(ctx, n)
}
n.Operand = op
case UnaryExpressionCpl: // '~' CastExpression
op := n.CastExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.CastExpression.IsSideEffectsFree
if op.Type().Kind() == Vector {
if !op.Type().Elem().IsIntegerType() {
ctx.errNode(n, "operand must be integer")
}
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: op.Type()}
break
}
if op.Type().IsComplexType() {
n.Operand = op
break
}
if !op.Type().IsIntegerType() {
ctx.errNode(n, "operand must be integer")
break
}
op = op.integerPromotion(ctx, n)
if v := op.Value(); v != nil {
op = (&operand{abi: &ctx.cfg.ABI, typ: op.Type(), value: v.cpl()}).normalize(ctx, n)
}
n.Operand = op
case UnaryExpressionNot: // '!' CastExpression
op := n.CastExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.CastExpression.IsSideEffectsFree
op2 := &operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(Int)}
switch {
case op.IsZero():
op2.value = Int64Value(1)
case op.IsNonZero():
op2.value = Int64Value(0)
}
n.Operand = op2
case UnaryExpressionSizeofExpr: // "sizeof" UnaryExpression
n.IsSideEffectsFree = true
rd := ctx.readDelta
// [0]6.5.3.4, 2: If the type of the operand is a variable length array type,
// the operand is evaluated; otherwise, the operand is not evaluated and the
// result is an integer constant.
switch op := n.UnaryExpression.Operand; {
case op != nil && op.Type() != nil && op.Type().IsVLA():
ctx.readDelta = 1
default:
ctx.readDelta = 0
}
ctx.push(ctx.mode &^ mIntConstExpr)
op := n.UnaryExpression.check(ctx, isAsmArg)
ctx.pop()
ctx.readDelta = rd
if op.Type().IsIncomplete() {
break
}
sz := op.Type().Size()
if d := n.UnaryExpression.Declarator(); d != nil && d.IsParameter {
sz = op.Type().Decay().Size()
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(ULongLong), value: Uint64Value(sz)}).convertTo(ctx, n, sizeT(ctx, n.lexicalScope, n.Token))
case UnaryExpressionSizeofType: // "sizeof" '(' TypeName ')'
n.IsSideEffectsFree = true
rd := ctx.readDelta
ctx.readDelta = 0
ctx.push(ctx.mode)
if ctx.mode&mIntConstExpr != 0 {
ctx.mode |= mIntConstExprAnyCast
}
t := n.TypeName.check(ctx, false, false, nil)
ctx.pop()
ctx.readDelta = rd
if t.IsIncomplete() {
break
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(ULongLong), value: Uint64Value(t.Size())}).convertTo(ctx, n, sizeT(ctx, n.lexicalScope, n.Token))
case UnaryExpressionLabelAddr: // "&&" IDENTIFIER
abi := &ctx.cfg.ABI
n.Operand = &operand{abi: abi, typ: abi.Ptr(n, abi.Type(Void))}
n.IsSideEffectsFree = true
ctx.not(n, mIntConstExpr)
f := ctx.checkFn
if f == nil {
//TODO report error
break
}
if f.ComputedGotos == nil {
f.ComputedGotos = map[StringID]*UnaryExpression{}
}
f.ComputedGotos[n.Token2.Value] = n
case UnaryExpressionAlignofExpr: // "_Alignof" UnaryExpression
n.IsSideEffectsFree = true
ctx.push(ctx.mode &^ mIntConstExpr)
op := n.UnaryExpression.check(ctx, isAsmArg)
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(ULongLong), value: Uint64Value(op.Type().Align())}).convertTo(ctx, n, sizeT(ctx, n.lexicalScope, n.Token))
ctx.pop()
case UnaryExpressionAlignofType: // "_Alignof" '(' TypeName ')'
n.IsSideEffectsFree = true
ctx.push(ctx.mode)
if ctx.mode&mIntConstExpr != 0 {
ctx.mode |= mIntConstExprAnyCast
}
t := n.TypeName.check(ctx, false, false, nil)
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(ULongLong), value: Uint64Value(t.Align())}).convertTo(ctx, n, sizeT(ctx, n.lexicalScope, n.Token))
ctx.pop()
case UnaryExpressionImag: // "__imag__" UnaryExpression
ctx.not(n, mIntConstExpr)
n.UnaryExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.UnaryExpression.IsSideEffectsFree
n.Operand = complexPart(ctx, n.UnaryExpression.Operand)
case UnaryExpressionReal: // "__real__" UnaryExpression
ctx.not(n, mIntConstExpr)
n.UnaryExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.UnaryExpression.IsSideEffectsFree
n.Operand = complexPart(ctx, n.UnaryExpression.Operand)
default:
panic(todo(""))
}
return n.Operand
}
func complexPart(ctx *context, op Operand) Operand {
var k Kind
switch op.Type().Kind() {
case ComplexChar:
k = Char
case ComplexDouble:
k = Double
case ComplexFloat:
k = Float
case ComplexInt:
k = Int
case ComplexLong:
k = Long
case ComplexLongDouble:
k = LongDouble
case ComplexLongLong:
k = LongLong
case ComplexShort:
k = Short
case ComplexUInt:
k = UInt
case ComplexULong:
k = ULong
case ComplexULongLong:
k = ULongLong
case ComplexUShort:
k = UShort
default:
//TODO report err
return noOperand
}
abi := &ctx.cfg.ABI
typ := abi.Type(k)
return &operand{abi: abi, typ: typ}
}
func sizeT(ctx *context, s Scope, tok Token) Type {
if t := ctx.sizeT; t != nil {
return t
}
t := ctx.stddef(idSizeT, s, tok)
if t.Kind() != Invalid {
ctx.sizeT = t
}
return t
}
func (n *CastExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case CastExpressionUnary: // UnaryExpression
n.Operand = n.UnaryExpression.addrOf(ctx)
n.IsSideEffectsFree = n.UnaryExpression.IsSideEffectsFree
case CastExpressionCast: // '(' TypeName ')' CastExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *UnaryExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case UnaryExpressionPostfix: // PostfixExpression
n.Operand = n.PostfixExpression.addrOf(ctx)
n.IsSideEffectsFree = n.PostfixExpression.IsSideEffectsFree
case UnaryExpressionInc: // "++" UnaryExpression
panic(n.Position().String())
case UnaryExpressionDec: // "--" UnaryExpression
panic(n.Position().String())
case UnaryExpressionAddrof: // '&' CastExpression
panic(n.Position().String())
case UnaryExpressionDeref: // '*' CastExpression
n.Operand = n.CastExpression.check(ctx, false)
n.IsSideEffectsFree = n.CastExpression.IsSideEffectsFree
case UnaryExpressionPlus: // '+' CastExpression
panic(n.Position().String())
case UnaryExpressionMinus: // '-' CastExpression
panic(n.Position().String())
case UnaryExpressionCpl: // '~' CastExpression
panic(n.Position().String())
case UnaryExpressionNot: // '!' CastExpression
panic(n.Position().String())
case UnaryExpressionSizeofExpr: // "sizeof" UnaryExpression
panic(n.Position().String())
case UnaryExpressionSizeofType: // "sizeof" '(' TypeName ')'
panic(n.Position().String())
case UnaryExpressionLabelAddr: // "&&" IDENTIFIER
panic(n.Position().String())
case UnaryExpressionAlignofExpr: // "_Alignof" UnaryExpression
panic(n.Position().String())
case UnaryExpressionAlignofType: // "_Alignof" '(' TypeName ')'
panic(n.Position().String())
case UnaryExpressionImag: // "__imag__" UnaryExpression
n.Operand = n.UnaryExpression.addrOf(ctx)
n.IsSideEffectsFree = n.UnaryExpression.IsSideEffectsFree
case UnaryExpressionReal: // "__real__" UnaryExpression
n.Operand = n.UnaryExpression.addrOf(ctx)
n.IsSideEffectsFree = n.UnaryExpression.IsSideEffectsFree
default:
panic(todo(""))
}
return n.Operand
}
func (n *PostfixExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case PostfixExpressionPrimary: // PrimaryExpression
n.Operand = n.PrimaryExpression.addrOf(ctx)
n.IsSideEffectsFree = n.PrimaryExpression.IsSideEffectsFree
case PostfixExpressionIndex: // PostfixExpression '[' Expression ']'
pe := n.PostfixExpression.check(ctx, false, false)
if d := n.PostfixExpression.Declarator(); d != nil && d.Type().Kind() != Ptr {
setAddressTaken(n, d, "PostfixExpression '[' Expression ']'")
d.Read += ctx.readDelta
}
e := n.Expression.check(ctx, false)
n.IsSideEffectsFree = n.PostfixExpression.IsSideEffectsFree && n.Expression.IsSideEffectsFree
t := pe.Type().Decay()
if t.Kind() == Invalid {
break
}
if t.Kind() == Ptr {
if t := e.Type(); t.Kind() != Invalid && !t.IsIntegerType() {
ctx.errNode(n.Expression, "index must be integer type, have %v", e.Type())
break
}
n.Operand = n.indexAddr(ctx, &n.Token, pe, e)
break
}
if pe.Type().Kind() == Vector {
if t := e.Type(); t.Kind() != Invalid && !t.IsIntegerType() {
ctx.errNode(n.Expression, "index must be integer type, have %v", e.Type())
break
}
n.Operand = n.index(ctx, pe, e)
break
}
t = e.Type().Decay()
if t.Kind() == Invalid {
break
}
if t.Kind() == Ptr {
if t := pe.Type(); t.Kind() != Invalid && !t.IsIntegerType() {
ctx.errNode(n.Expression, "index must be integer type, have %v", pe.Type())
break
}
n.Operand = n.indexAddr(ctx, &n.Token, e, pe)
break
}
ctx.errNode(n, "invalid index expression %v[%v]", pe.Type(), e.Type())
case PostfixExpressionCall: // PostfixExpression '(' ArgumentExpressionList ')'
panic(n.Position().String())
case PostfixExpressionSelect: // PostfixExpression '.' IDENTIFIER
op := n.PostfixExpression.addrOf(ctx)
n.IsSideEffectsFree = n.PostfixExpression.IsSideEffectsFree
if d := n.PostfixExpression.Declarator(); d != nil {
setAddressTaken(n, d, "PostfixExpression '.' IDENTIFIER")
d.Read += ctx.readDelta
}
st := op.Type().Elem()
if k := st.Kind(); k == Invalid || k != Struct && k != Union {
//TODO report error
break
}
f, ok := st.FieldByName(n.Token2.Value)
if !ok {
ctx.errNode(&n.Token2, "unknown or ambiguous field: %s", n.Token2.Value)
break
}
n.Field = f
ft := f.Type()
if f.IsBitField() {
//TODO report error
break
}
ot := ctx.cfg.ABI.Ptr(n, ft)
switch {
case op.IsConst():
switch x := op.Value().(type) {
case Uint64Value:
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: ot, value: x + Uint64Value(f.Offset())}
return n.Operand
case nil:
// nop
default:
//TODO panic(todo(" %v: %T", n.Position(), x))
}
fallthrough
default:
n.Operand = &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: ot, offset: op.Offset() + f.Offset()}, declarator: op.Declarator()}
}
case PostfixExpressionPSelect: // PostfixExpression "->" IDENTIFIER
op := n.PostfixExpression.check(ctx, false, false)
n.IsSideEffectsFree = n.PostfixExpression.IsSideEffectsFree
if d := n.PostfixExpression.Declarator(); d != nil {
d.Read += ctx.readDelta
}
t := op.Type()
if k := t.Decay().Kind(); k == Invalid || k != Ptr {
//TODO report error
break
}
st := t.Elem()
if k := st.Kind(); k == Invalid || k != Struct && k != Union {
//TODO report error
break
}
f, ok := st.FieldByName(n.Token2.Value)
if !ok {
//TODO report error
break
}
n.Field = f
ft := f.Type()
if f.IsBitField() {
//TODO report error
break
}
ot := ctx.cfg.ABI.Ptr(n, ft)
switch {
case op.IsConst():
switch x := op.Value().(type) {
case Uint64Value:
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: ot, value: x + Uint64Value(f.Offset())}
return n.Operand
case nil:
// nop
default:
panic(todo(" %T", x))
}
fallthrough
default:
n.Operand = &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: ot, offset: op.Offset() + f.Offset()}, declarator: op.Declarator()}
}
case PostfixExpressionInc: // PostfixExpression "++"
panic(n.Position().String())
case PostfixExpressionDec: // PostfixExpression "--"
panic(n.Position().String())
case PostfixExpressionComplit: // '(' TypeName ')' '{' InitializerList ',' '}'
//TODO IsSideEffectsFree
if f := ctx.checkFn; f != nil {
f.CompositeLiterals = append(f.CompositeLiterals, n)
}
t := n.TypeName.check(ctx, false, false, nil)
var v *InitializerValue
if n.InitializerList != nil {
n.InitializerList.isConst = true
n.InitializerList.check(ctx, &n.InitializerList.list, t, Automatic, 0, nil, false)
n.InitializerList.setConstZero()
v = &InitializerValue{typ: ctx.cfg.ABI.Ptr(n, t), initializer: n.InitializerList}
}
n.Operand = &lvalue{Operand: (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Ptr(n, t), value: v}).normalize(ctx, n)}
case PostfixExpressionTypeCmp: // "__builtin_types_compatible_p" '(' TypeName ',' TypeName ')'
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *PostfixExpression) indexAddr(ctx *context, nd Node, pe, e Operand) Operand {
var x uintptr
hasx := false
switch v := e.Value().(type) {
case Int64Value:
x = uintptr(v)
hasx = true
case Uint64Value:
x = uintptr(v)
hasx = true
}
off := x * pe.Type().Elem().Size()
switch y := pe.Value().(type) {
case StringValue, WideStringValue:
if hasx {
return &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Ptr(n, pe.Type().Elem()), value: pe.Value(), offset: off}}
}
case Uint64Value:
if hasx {
return &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Ptr(n, pe.Type().Elem()), value: y + Uint64Value(off)}}
}
}
if d := pe.Declarator(); d != nil && hasx {
r := &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Ptr(n, pe.Type().Elem()), offset: pe.Offset() + off}, declarator: d}
return r
}
return &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Ptr(n, pe.Type().Elem())}}
}
func (n *PrimaryExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case PrimaryExpressionIdent: // IDENTIFIER
n.IsSideEffectsFree = true
n.check(ctx, false, false)
if d := n.Operand.Declarator(); d != nil {
switch d.Type().Kind() {
case Function:
// nop //TODO ?
default:
setAddressTaken(n, d, "&IDENTIFIER")
n.Operand = &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Ptr(n, d.Type())}, declarator: d}
}
return n.Operand
}
if ctx.cfg.RejectLateBinding && !ctx.cfg.ignoreUndefinedIdentifiers {
ctx.errNode(n, "front-end: undefined: %s", n.Token.Value)
return noOperand
}
//TODO
case PrimaryExpressionInt: // INTCONST
panic(n.Position().String())
case PrimaryExpressionFloat: // FLOATCONST
panic(n.Position().String())
case PrimaryExpressionEnum: // ENUMCONST
panic(n.Position().String())
case PrimaryExpressionChar: // CHARCONST
panic(n.Position().String())
case PrimaryExpressionLChar: // LONGCHARCONST
panic(n.Position().String())
case PrimaryExpressionString: // STRINGLITERAL
panic(n.Position().String())
case PrimaryExpressionLString: // LONGSTRINGLITERAL
panic(n.Position().String())
case PrimaryExpressionExpr: // '(' Expression ')'
n.Operand = n.Expression.addrOf(ctx)
n.IsSideEffectsFree = n.Expression.IsSideEffectsFree
case PrimaryExpressionStmt: // '(' CompoundStatement ')'
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *Expression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case ExpressionAssign: // AssignmentExpression
n.Operand = n.AssignmentExpression.addrOf(ctx)
n.IsSideEffectsFree = n.AssignmentExpression.IsSideEffectsFree
case ExpressionComma: // Expression ',' AssignmentExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *AssignmentExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case AssignmentExpressionCond: // ConditionalExpression
n.Operand = n.ConditionalExpression.addrOf(ctx)
n.IsSideEffectsFree = n.ConditionalExpression.IsSideEffectsFree
case AssignmentExpressionAssign: // UnaryExpression '=' AssignmentExpression
panic(n.Position().String())
case AssignmentExpressionMul: // UnaryExpression "*=" AssignmentExpression
panic(n.Position().String())
case AssignmentExpressionDiv: // UnaryExpression "/=" AssignmentExpression
panic(n.Position().String())
case AssignmentExpressionMod: // UnaryExpression "%=" AssignmentExpression
panic(n.Position().String())
case AssignmentExpressionAdd: // UnaryExpression "+=" AssignmentExpression
panic(n.Position().String())
case AssignmentExpressionSub: // UnaryExpression "-=" AssignmentExpression
panic(n.Position().String())
case AssignmentExpressionLsh: // UnaryExpression "<<=" AssignmentExpression
panic(n.Position().String())
case AssignmentExpressionRsh: // UnaryExpression ">>=" AssignmentExpression
panic(n.Position().String())
case AssignmentExpressionAnd: // UnaryExpression "&=" AssignmentExpression
panic(n.Position().String())
case AssignmentExpressionXor: // UnaryExpression "^=" AssignmentExpression
panic(n.Position().String())
case AssignmentExpressionOr: // UnaryExpression "|=" AssignmentExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *ConditionalExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case ConditionalExpressionLOr: // LogicalOrExpression
n.Operand = n.LogicalOrExpression.addrOf(ctx)
n.IsSideEffectsFree = n.LogicalOrExpression.IsSideEffectsFree
case ConditionalExpressionCond: // LogicalOrExpression '?' Expression ':' ConditionalExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *LogicalOrExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case LogicalOrExpressionLAnd: // LogicalAndExpression
n.Operand = n.LogicalAndExpression.addrOf(ctx)
n.IsSideEffectsFree = n.LogicalAndExpression.IsSideEffectsFree
case LogicalOrExpressionLOr: // LogicalOrExpression "||" LogicalAndExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *LogicalAndExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case LogicalAndExpressionOr: // InclusiveOrExpression
n.Operand = n.InclusiveOrExpression.addrOf(ctx)
n.IsSideEffectsFree = n.InclusiveOrExpression.IsSideEffectsFree
case LogicalAndExpressionLAnd: // LogicalAndExpression "&&" InclusiveOrExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *InclusiveOrExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case InclusiveOrExpressionXor: // ExclusiveOrExpression
n.Operand = n.ExclusiveOrExpression.addrOf(ctx)
n.IsSideEffectsFree = n.ExclusiveOrExpression.IsSideEffectsFree
case InclusiveOrExpressionOr: // InclusiveOrExpression '|' ExclusiveOrExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *ExclusiveOrExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case ExclusiveOrExpressionAnd: // AndExpression
n.Operand = n.AndExpression.addrOf(ctx)
n.IsSideEffectsFree = n.AndExpression.IsSideEffectsFree
case ExclusiveOrExpressionXor: // ExclusiveOrExpression '^' AndExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *AndExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case AndExpressionEq: // EqualityExpression
n.Operand = n.EqualityExpression.addrOf(ctx)
n.IsSideEffectsFree = n.EqualityExpression.IsSideEffectsFree
case AndExpressionAnd: // AndExpression '&' EqualityExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *EqualityExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case EqualityExpressionRel: // RelationalExpression
n.Operand = n.RelationalExpression.addrOf(ctx)
n.IsSideEffectsFree = n.RelationalExpression.IsSideEffectsFree
case EqualityExpressionEq: // EqualityExpression "==" RelationalExpression
panic(n.Position().String())
case EqualityExpressionNeq: // EqualityExpression "!=" RelationalExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *RelationalExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case RelationalExpressionShift: // ShiftExpression
n.Operand = n.ShiftExpression.addrOf(ctx)
n.IsSideEffectsFree = n.ShiftExpression.IsSideEffectsFree
case RelationalExpressionLt: // RelationalExpression '<' ShiftExpression
panic(n.Position().String())
case RelationalExpressionGt: // RelationalExpression '>' ShiftExpression
panic(n.Position().String())
case RelationalExpressionLeq: // RelationalExpression "<=" ShiftExpression
panic(n.Position().String())
case RelationalExpressionGeq: // RelationalExpression ">=" ShiftExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *ShiftExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case ShiftExpressionAdd: // AdditiveExpression
n.Operand = n.AdditiveExpression.addrOf(ctx)
n.IsSideEffectsFree = n.AdditiveExpression.IsSideEffectsFree
case ShiftExpressionLsh: // ShiftExpression "<<" AdditiveExpression
panic(n.Position().String())
case ShiftExpressionRsh: // ShiftExpression ">>" AdditiveExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *AdditiveExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case AdditiveExpressionMul: // MultiplicativeExpression
n.Operand = n.MultiplicativeExpression.addrOf(ctx)
n.IsSideEffectsFree = n.MultiplicativeExpression.IsSideEffectsFree
case AdditiveExpressionAdd: // AdditiveExpression '+' MultiplicativeExpression
panic(n.Position().String())
case AdditiveExpressionSub: // AdditiveExpression '-' MultiplicativeExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *MultiplicativeExpression) addrOf(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case MultiplicativeExpressionCast: // CastExpression
n.Operand = n.CastExpression.addrOf(ctx)
n.IsSideEffectsFree = n.CastExpression.IsSideEffectsFree
case MultiplicativeExpressionMul: // MultiplicativeExpression '*' CastExpression
panic(n.Position().String())
case MultiplicativeExpressionDiv: // MultiplicativeExpression '/' CastExpression
panic(n.Position().String())
case MultiplicativeExpressionMod: // MultiplicativeExpression '%' CastExpression
panic(n.Position().String())
default:
panic(todo(""))
}
return n.Operand
}
func (n *TypeName) check(ctx *context, inUnion, isPacked bool, list *[]*TypeSpecifier) Type {
if n == nil {
return noType
}
n.typ = n.SpecifierQualifierList.check(ctx, inUnion, isPacked, list)
if n.AbstractDeclarator != nil {
n.typ = n.AbstractDeclarator.check(ctx, n.typ)
}
for list := n.SpecifierQualifierList; list != nil; list = list.SpecifierQualifierList {
if expr, ok := list.AttributeSpecifier.Has(idVectorSize, idVectorSize2); ok {
n.vectorize(ctx, expr)
break
}
}
return n.typ
}
func (n *TypeName) vectorize(ctx *context, expr *ExpressionList) {
dst := &n.typ
elem := n.typ
switch n.typ.Kind() {
case Function:
dst = &n.typ.(*functionType).result
elem = n.typ.Result()
}
sz := expr.vectorSize(ctx)
if sz == 0 {
sz = elem.Size()
}
if sz%elem.Size() != 0 {
ctx.errNode(expr, "vector size must be a multiple of the base size")
}
b := n.typ.base()
b.size = sz
b.kind = byte(Vector)
*dst = &vectorType{
typeBase: b,
elem: elem,
length: sz / elem.Size(),
}
}
func (n *AbstractDeclarator) check(ctx *context, typ Type) Type {
if n == nil {
return typ
}
n.typ = noType //TODO-
switch n.Case {
case AbstractDeclaratorPtr: // Pointer
n.typ = n.Pointer.check(ctx, typ)
case AbstractDeclaratorDecl: // Pointer DirectAbstractDeclarator
typ = n.Pointer.check(ctx, typ)
n.typ = n.DirectAbstractDeclarator.check(ctx, typ)
default:
panic(todo(""))
}
return n.typ
}
func (n *DirectAbstractDeclarator) check(ctx *context, typ Type) Type {
if n == nil {
return typ
}
switch n.Case {
case DirectAbstractDeclaratorDecl: // '(' AbstractDeclarator ')'
if n.AbstractDeclarator == nil {
// [0], 6.7.6, 128)
//
// As indicated by the syntax, empty parentheses in a
// type name are interpreted as function with no
// parameter specification, rather than redundant
// parentheses around the omitted identifier.
panic(todo("")) //TODO
}
return n.AbstractDeclarator.check(ctx, typ)
case DirectAbstractDeclaratorArr: // DirectAbstractDeclarator '[' TypeQualifiers AssignmentExpression ']'
return n.DirectAbstractDeclarator.check(ctx, checkArray(ctx, &n.Token, typ, n.AssignmentExpression, true, false))
case DirectAbstractDeclaratorStaticArr: // DirectAbstractDeclarator '[' "static" TypeQualifiers AssignmentExpression ']'
return n.DirectAbstractDeclarator.check(ctx, checkArray(ctx, &n.Token, typ, n.AssignmentExpression, false, false))
case DirectAbstractDeclaratorArrStatic: // DirectAbstractDeclarator '[' TypeQualifiers "static" AssignmentExpression ']'
return n.DirectAbstractDeclarator.check(ctx, checkArray(ctx, &n.Token, typ, n.AssignmentExpression, false, false))
case DirectAbstractDeclaratorArrStar: // DirectAbstractDeclarator '[' '*' ']'
return n.DirectAbstractDeclarator.check(ctx, checkArray(ctx, &n.Token, typ, nil, true, true))
case DirectAbstractDeclaratorFunc: // DirectAbstractDeclarator '(' ParameterTypeList ')'
ft := &functionType{typeBase: typeBase{kind: byte(Function)}, result: typ}
n.ParameterTypeList.check(ctx, ft)
return n.DirectAbstractDeclarator.check(ctx, ft)
}
panic(internalErrorf("%v: %v", n.Position(), n.Case))
}
func (n *ParameterTypeList) check(ctx *context, ft *functionType) {
if n == nil {
return
}
switch n.Case {
case ParameterTypeListList: // ParameterList
n.ParameterList.check(ctx, ft)
case ParameterTypeListVar: // ParameterList ',' "..."
ft.variadic = true
n.ParameterList.check(ctx, ft)
default:
panic(todo(""))
}
}
func (n *ParameterList) check(ctx *context, ft *functionType) {
for ; n != nil; n = n.ParameterList {
p := n.ParameterDeclaration.check(ctx, ft)
ft.params = append(ft.params, p)
}
}
func (n *ParameterDeclaration) check(ctx *context, ft *functionType) *Parameter {
if n == nil {
return nil
}
switch n.Case {
case ParameterDeclarationDecl: // DeclarationSpecifiers Declarator AttributeSpecifierList
typ, _, _ := n.DeclarationSpecifiers.check(ctx, false)
n.Declarator.IsParameter = true
if n.typ = n.Declarator.check(ctx, n.DeclarationSpecifiers, typ, false); n.typ.Kind() == Void {
panic(n.Position().String())
}
if n.AttributeSpecifierList != nil {
//TODO panic(n.Position().String())
}
n.AttributeSpecifierList.check(ctx, n.typ.baseP())
return &Parameter{d: n.Declarator, typ: n.typ}
case ParameterDeclarationAbstract: // DeclarationSpecifiers AbstractDeclarator
n.typ, _, _ = n.DeclarationSpecifiers.check(ctx, false)
if n.AbstractDeclarator != nil {
n.typ = n.AbstractDeclarator.check(ctx, n.typ)
}
return &Parameter{typ: n.typ}
default:
panic(todo(""))
}
}
func (n *Pointer) check(ctx *context, typ Type) (t Type) {
if n == nil || typ == nil {
return typ
}
switch n.Case {
case PointerTypeQual: // '*' TypeQualifiers
n.TypeQualifiers.check(ctx, &n.typeQualifiers)
case PointerPtr: // '*' TypeQualifiers Pointer
n.TypeQualifiers.check(ctx, &n.typeQualifiers)
typ = n.Pointer.check(ctx, typ)
case PointerBlock: // '^' TypeQualifiers
n.TypeQualifiers.check(ctx, &n.typeQualifiers)
default:
panic(todo(""))
}
r := ctx.cfg.ABI.Ptr(n, typ).(*pointerType)
if n.typeQualifiers != nil {
r.typeQualifiers = n.typeQualifiers.check(ctx, (*DeclarationSpecifiers)(nil), false)
}
return r
}
func (n *TypeQualifiers) check(ctx *context, typ **typeBase) {
for ; n != nil; n = n.TypeQualifiers {
switch n.Case {
case TypeQualifiersTypeQual: // TypeQualifier
if *typ == nil {
*typ = &typeBase{}
}
n.TypeQualifier.check(ctx, *typ)
case TypeQualifiersAttribute: // AttributeSpecifier
if *typ == nil {
*typ = &typeBase{}
}
n.AttributeSpecifier.check(ctx, *typ)
default:
panic(todo(""))
}
}
}
func (n *TypeQualifier) check(ctx *context, typ *typeBase) {
if n == nil {
return
}
switch n.Case {
case TypeQualifierConst: // "const"
typ.flags |= fConst
case TypeQualifierRestrict: // "restrict"
typ.flags |= fRestrict
case TypeQualifierVolatile: // "volatile"
typ.flags |= fVolatile
case TypeQualifierAtomic: // "_Atomic"
typ.flags |= fAtomic
default:
panic(todo(""))
}
}
func (n *SpecifierQualifierList) check(ctx *context, inUnion, isPacked bool, list *[]*TypeSpecifier) Type {
n0 := n
typ := &typeBase{}
for ; n != nil; n = n.SpecifierQualifierList {
switch n.Case {
case SpecifierQualifierListTypeSpec: // TypeSpecifier SpecifierQualifierList
n.TypeSpecifier.check(ctx, typ, inUnion)
if list != nil && n.TypeSpecifier.Case != TypeSpecifierAtomic {
*list = append(*list, n.TypeSpecifier)
}
case SpecifierQualifierListTypeQual: // TypeQualifier SpecifierQualifierList
n.TypeQualifier.check(ctx, typ)
case SpecifierQualifierListAlignSpec: // AlignmentSpecifier SpecifierQualifierList
n.AlignmentSpecifier.check(ctx)
case SpecifierQualifierListAttribute: // AttributeSpecifier SpecifierQualifierList
n.AttributeSpecifier.check(ctx, typ)
default:
panic(todo(""))
}
}
return typ.check(ctx, n0, true)
}
func (n *TypeSpecifier) check(ctx *context, typ *typeBase, inUnion bool) {
if n == nil {
return
}
switch n.Case {
case
TypeSpecifierVoid, // "void"
TypeSpecifierChar, // "char"
TypeSpecifierShort, // "short"
TypeSpecifierInt, // "int"
TypeSpecifierInt8, // "__int8"
TypeSpecifierInt16, // "__int16"
TypeSpecifierInt32, // "__int32"
TypeSpecifierInt64, // "__int64"
TypeSpecifierInt128, // "__int128"
TypeSpecifierLong, // "long"
TypeSpecifierFloat, // "float"
TypeSpecifierFloat16, // "__fp16"
TypeSpecifierDecimal32, // "_Decimal32"
TypeSpecifierDecimal64, // "_Decimal64"
TypeSpecifierDecimal128, // "_Decimal128"
TypeSpecifierFloat32, // "_Float32"
TypeSpecifierFloat32x, // "_Float32x"
TypeSpecifierFloat64, // "_Float64"
TypeSpecifierFloat64x, // "_Float64x"
TypeSpecifierFloat128, // "_Float128"
TypeSpecifierFloat80, // "__float80"
TypeSpecifierDouble, // "double"
TypeSpecifierSigned, // "signed"
TypeSpecifierUnsigned, // "unsigned"
TypeSpecifierBool, // "_Bool"
TypeSpecifierComplex: // "_Complex"
// nop
case TypeSpecifierStructOrUnion: // StructOrUnionSpecifier
n.StructOrUnionSpecifier.check(ctx, typ, inUnion)
case TypeSpecifierEnum: // EnumSpecifier
n.EnumSpecifier.check(ctx)
case TypeSpecifierTypedefName: // TYPEDEFNAME
// nop
case TypeSpecifierTypeofExpr: // "typeof" '(' Expression ')'
op := n.Expression.check(ctx, false)
n.typ = op.Type()
case TypeSpecifierTypeofType: // "typeof" '(' TypeName ')'
n.typ = n.TypeName.check(ctx, false, false, nil)
case TypeSpecifierAtomic: // AtomicTypeSpecifier
t := n.AtomicTypeSpecifier.check(ctx)
typ.kind = t.base().kind
typ.flags |= fAtomic
n.typ = typ
case
TypeSpecifierFract, // "_Fract"
TypeSpecifierSat, // "_Sat"
TypeSpecifierAccum: // "_Accum"
// nop
default:
panic(todo(""))
}
}
func (n *AtomicTypeSpecifier) check(ctx *context) Type {
if n == nil {
return nil
}
return n.TypeName.check(ctx, false, false, &n.list)
}
func (n *EnumSpecifier) check(ctx *context) {
if n == nil {
return
}
switch n.Case {
case EnumSpecifierDef: // "enum" AttributeSpecifierList IDENTIFIER '{' EnumeratorList ',' '}'
n.AttributeSpecifierList.check(ctx, nil)
min, max := n.EnumeratorList.check(ctx)
var tmin, tmax Type
switch min := min.(type) {
case Int64Value:
switch {
case min >= 0 && ctx.cfg.UnsignedEnums:
tmin = n.requireUint(ctx, uint64(min))
switch max := max.(type) {
case Int64Value:
tmax = n.requireUint(ctx, uint64(max))
case Uint64Value:
tmax = n.requireUint(ctx, uint64(max))
case nil:
panic(todo("%v:", n.Position()))
}
default:
tmin = n.requireInt(ctx, int64(min))
switch max := max.(type) {
case Int64Value:
tmax = n.requireInt(ctx, int64(max))
case Uint64Value:
tmax = n.requireInt(ctx, int64(max))
case nil:
panic(todo("%v:", n.Position()))
}
}
case Uint64Value:
tmin = n.requireUint(ctx, uint64(min))
switch max := max.(type) {
case Int64Value:
if max < 0 {
panic(todo("%v: min %v max %v", n.Position(), min, max))
}
tmax = n.requireUint(ctx, uint64(max))
case Uint64Value:
tmax = n.requireUint(ctx, uint64(max))
case nil:
_ = max
panic(todo("%v:", n.Position()))
}
case nil:
panic(todo("%v: %v %T", n.Position(), n.Case, min))
}
switch {
case tmin.Size() > tmax.Size():
n.typ = tmin
default:
n.typ = tmax
}
if !n.typ.IsIntegerType() || n.typ.Size() == 0 { //TODO-
panic(todo(""))
}
reg := n.lexicalScope.Parent() == nil
for list := n.EnumeratorList; list != nil; list = list.EnumeratorList {
en := list.Enumerator
en.Operand = en.Operand.convertTo(ctx, en, n.typ)
if reg {
ctx.enums[en.Token.Value] = en.Operand
}
}
case EnumSpecifierTag: // "enum" AttributeSpecifierList IDENTIFIER
n.typ = &taggedType{
resolutionScope: n.lexicalScope,
tag: n.Token2.Value,
typeBase: &typeBase{kind: byte(Enum)},
}
default:
panic(todo(""))
}
}
func (n *EnumSpecifier) requireInt(ctx *context, m int64) (r Type) {
var w int
switch {
case m < 0:
w = mathutil.BitLenUint64(uint64(-m))
default:
w = mathutil.BitLenUint64(uint64(m)) + 1
}
w = mathutil.Max(w, 32)
abi := ctx.cfg.ABI
for k0, v := range intConvRank {
k := Kind(k0)
if k == Bool || k == Enum || v == 0 || !abi.isSignedInteger(k) {
continue
}
t := abi.Types[k]
if int(t.Size)*8 < w {
continue
}
if r == nil || t.Size < r.Size() {
r = abi.Type(k)
}
}
if r == nil || r.Size() == 0 { //TODO-
panic(todo(""))
}
return r
}
func (n *EnumSpecifier) requireUint(ctx *context, m uint64) (r Type) {
w := mathutil.BitLenUint64(m)
w = mathutil.Max(w, 32)
abi := ctx.cfg.ABI
for k0, v := range intConvRank {
k := Kind(k0)
if k == Bool || k == Enum || v == 0 || abi.isSignedInteger(k) {
continue
}
t := abi.Types[k]
if int(t.Size)*8 < w {
continue
}
if r == nil || t.Size < r.Size() {
r = abi.Type(k)
}
}
if r == nil || r.Size() == 0 { //TODO-
panic(todo(""))
}
return r
}
func (n *EnumeratorList) check(ctx *context) (min, max Value) {
var iota Value
for ; n != nil; n = n.EnumeratorList {
iota, min, max = n.Enumerator.check(ctx, iota, min, max)
}
return min, max
}
func (n *Enumerator) check(ctx *context, iota, min, max Value) (Value, Value, Value) {
if n == nil {
return nil, nil, nil
}
if iota == nil {
iota = Int64Value(0)
}
switch n.Case {
case EnumeratorIdent: // IDENTIFIER AttributeSpecifierList
n.AttributeSpecifierList.check(ctx, nil)
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(Int), value: iota}).normalize(ctx, n)
case EnumeratorExpr: // IDENTIFIER AttributeSpecifierList '=' ConstantExpression
n.AttributeSpecifierList.check(ctx, nil)
n.Operand = n.ConstantExpression.check(ctx, ctx.mode|mIntConstExpr, false)
iota = n.Operand.Value()
default:
panic(todo(""))
}
switch x := iota.(type) {
case Int64Value:
switch m := min.(type) {
case Int64Value:
if x < m {
min = x
}
case Uint64Value:
if x < 0 || Uint64Value(x) < m {
min = x
}
case nil:
min = x
}
switch m := max.(type) {
case Int64Value:
if x > m {
max = x
}
case Uint64Value:
if x >= 0 && Uint64Value(x) > m {
max = x
}
case nil:
max = x
}
x++
iota = x
case Uint64Value:
switch m := min.(type) {
case Int64Value:
if m < 0 {
break
}
if x < Uint64Value(m) {
min = x
}
case Uint64Value:
if x < m {
min = x
}
case nil:
min = x
}
switch m := max.(type) {
case Int64Value:
if m < 0 {
max = x
break
}
if x > Uint64Value(m) {
max = x
}
case Uint64Value:
if x > m {
max = x
}
case nil:
max = x
}
x++
iota = x
case nil:
//TODO report type
}
return iota, min, max
}
func (n *ConstantExpression) check(ctx *context, mode mode, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
ctx.push(mode)
n.Operand = n.ConditionalExpression.check(ctx, isAsmArg)
ctx.pop()
return n.Operand
}
func (n *StructOrUnionSpecifier) check(ctx *context, typ *typeBase, inUnion bool) Type {
if n == nil {
return noType
}
switch n.Case {
case StructOrUnionSpecifierDef: // StructOrUnion AttributeSpecifierList IDENTIFIER '{' StructDeclarationList '}'
typ.kind = byte(n.StructOrUnion.check(ctx))
attr := n.AttributeSpecifierList.check(ctx, typ)
fields := n.StructDeclarationList.check(ctx, inUnion || typ.Kind() == Union, typ.IsPacked())
m := make(map[StringID]*field, len(fields))
x := 0
for _, v := range fields {
if v.name != 0 {
v.x = x
v.xs = []int{x}
x++
m[v.name] = v
}
}
t := (&structType{
attr: attr,
fields: fields,
m: m,
tag: n.Token.Value,
typeBase: typ,
}).check(ctx, n)
if typ.Kind() == Union {
var k Kind
for _, v := range fields {
if k == Invalid {
k = v.typ.Kind()
continue
}
if v.typ.Kind() != k {
k = Invalid
break
}
}
t.common = k
}
n.typ = t
if nm := n.Token.Value; nm != 0 && n.lexicalScope.Parent() == nil {
ctx.structTypes[nm] = t
}
case StructOrUnionSpecifierTag: // StructOrUnion AttributeSpecifierList IDENTIFIER
typ.kind = byte(n.StructOrUnion.check(ctx))
attr := n.AttributeSpecifierList.check(ctx, typ.baseP())
n.typ = &taggedType{
resolutionScope: n.lexicalScope,
tag: n.Token.Value,
typeBase: typ,
}
if attr != nil {
n.typ = &attributedType{n.typ, attr}
}
default:
panic(todo(""))
}
return n.typ
}
func (n *StructDeclarationList) check(ctx *context, inUnion, isPacked bool) (s []*field) {
for ; n != nil; n = n.StructDeclarationList {
s = append(s, n.StructDeclaration.check(ctx, inUnion, isPacked)...)
}
return s
}
func (n *StructDeclaration) check(ctx *context, inUnion, isPacked bool) (s []*field) {
if n == nil || n.Empty {
return nil
}
typ := n.SpecifierQualifierList.check(ctx, inUnion, isPacked, nil)
if n.StructDeclaratorList != nil {
return n.StructDeclaratorList.check(ctx, n.SpecifierQualifierList, typ, inUnion, isPacked)
}
return []*field{{typ: typ, inUnion: inUnion}}
}
func (n *StructDeclaratorList) check(ctx *context, td typeDescriptor, typ Type, inUnion, isPacked bool) (s []*field) {
for ; n != nil; n = n.StructDeclaratorList {
s = append(s, n.StructDeclarator.check(ctx, td, typ, inUnion, isPacked))
}
return s
}
func (n *StructDeclarator) check(ctx *context, td typeDescriptor, typ Type, inUnion, isPacked bool) *field {
if n == nil {
return nil
}
if isPacked {
typ.baseP().flags |= fPacked
}
if n.Declarator != nil {
typ = n.Declarator.check(ctx, td, typ, false)
}
if attr := n.AttributeSpecifierList.check(ctx, typ.baseP()); len(attr) != 0 {
typ = &attributedType{typ, attr}
}
sf := &field{
typ: typ,
d: n,
inUnion: inUnion,
}
switch n.Case {
case StructDeclaratorDecl: // Declarator
sf.name = n.Declarator.Name()
case StructDeclaratorBitField: // Declarator ':' ConstantExpression AttributeSpecifierList
sf.isBitField = true
sf.typ = &bitFieldType{Type: typ, field: sf}
sf.name = n.Declarator.Name()
if op := n.ConstantExpression.check(ctx, ctx.mode|mIntConstExpr, false); op.Type().IsIntegerType() {
switch x := op.Value().(type) {
case Int64Value:
if x < 0 || x > 64 {
panic("TODO")
}
sf.bitFieldWidth = byte(x)
case Uint64Value:
if x > 64 {
panic("TODO")
}
sf.bitFieldWidth = byte(x)
default:
//dbg("%T", x)
panic(PrettyString(op))
}
} else {
//dbg("", n.ConstantExpression)
panic(n.Declarator.Position())
}
n.AttributeSpecifierList.check(ctx, sf.typ.baseP())
default:
panic(todo(""))
}
return sf
}
func (n *StructOrUnion) check(ctx *context) Kind {
if n == nil {
return Invalid
}
switch n.Case {
case StructOrUnionStruct: // "struct"
return Struct
case StructOrUnionUnion: // "union"
return Union
default:
panic(todo(""))
}
}
func (n *CastExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case CastExpressionUnary: // UnaryExpression
n.Operand = n.UnaryExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.UnaryExpression.IsSideEffectsFree
case CastExpressionCast: // '(' TypeName ')' CastExpression
t := n.TypeName.check(ctx, false, false, nil)
ctx.push(ctx.mode)
if m := ctx.mode; m&mIntConstExpr != 0 && m&mIntConstExprAnyCast == 0 {
if t := n.TypeName.Type(); t != nil && t.Kind() != Int {
ctx.mode &^= mIntConstExpr
}
ctx.mode |= mIntConstExprFloat
}
op := n.CastExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.CastExpression.IsSideEffectsFree
ctx.pop()
n.Operand = op.convertTo(ctx, n, t)
default:
panic(todo(""))
}
return n.Operand
}
func (n *PostfixExpression) check(ctx *context, implicitFunc, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
out:
switch n.Case {
case PostfixExpressionPrimary: // PrimaryExpression
n.Operand = n.PrimaryExpression.check(ctx, implicitFunc, isAsmArg)
n.IsSideEffectsFree = n.PrimaryExpression.IsSideEffectsFree
case PostfixExpressionIndex: // PostfixExpression '[' Expression ']'
pe := n.PostfixExpression.check(ctx, false, isAsmArg)
if d := pe.Declarator(); d != nil {
d.Read += ctx.readDelta
}
e := n.Expression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.PostfixExpression.IsSideEffectsFree && n.Expression.IsSideEffectsFree
t := pe.Type().Decay()
if t.Kind() == Invalid {
break
}
if t.Kind() == Ptr {
if t := e.Type(); t.Kind() != Invalid && !t.IsIntegerType() {
ctx.errNode(n.Expression, "index must be integer type, have %v", e.Type())
break
}
n.Operand = n.index(ctx, pe, e)
break
}
if pe.Type().Kind() == Vector {
if t := e.Type(); t.Kind() != Invalid && !t.IsIntegerType() {
ctx.errNode(n.Expression, "index must be integer type, have %v", e.Type())
break
}
n.Operand = n.index(ctx, pe, e)
break
}
t = e.Type().Decay()
if t.Kind() == Invalid {
break
}
if t.Kind() == Ptr {
if t := pe.Type(); t.Kind() != Invalid && !t.IsIntegerType() {
ctx.errNode(n.Expression, "index must be integer type, have %v", pe.Type())
break
}
n.Operand = n.index(ctx, e, pe)
break
}
ctx.errNode(n, "invalid index expression %v[%v]", pe.Type(), e.Type())
case PostfixExpressionCall: // PostfixExpression '(' ArgumentExpressionList ')'
op := n.PostfixExpression.check(ctx, true, isAsmArg)
Inspect(n.PostfixExpression, func(n Node, enter bool) bool {
if !enter {
return true
}
if x, ok := n.(*PrimaryExpression); ok {
if d := x.Declarator(); d != nil {
d.called = true
}
}
return true
})
args := n.ArgumentExpressionList.check(ctx, n.PostfixExpression.Declarator(), isAsmArg)
switch op.Declarator().Name() {
case idBuiltinConstantPImpl:
if len(args) < 2 {
panic(todo(""))
}
var v Int64Value
if args[1].Value() != nil {
v = 1
}
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(Int), value: v}
default:
switch n.PostfixExpression.Operand.Value().(type) {
case StringValue, WideStringValue:
if isAsmArg {
// asm("foo": "bar" (a))
// ^
break out
}
}
n.Operand = n.checkCall(ctx, n, op.Type(), args, n.ArgumentExpressionList)
}
case PostfixExpressionSelect: // PostfixExpression '.' IDENTIFIER
op := n.PostfixExpression.check(ctx, false, isAsmArg)
n.IsSideEffectsFree = n.PostfixExpression.IsSideEffectsFree
if d := op.Declarator(); d != nil {
d.Read += ctx.readDelta
}
st := op.Type()
st0 := st.underlyingType()
if k := st.Kind(); k == Invalid || k != Struct && k != Union {
ctx.errNode(n.PostfixExpression, "select expression of wrong type: %s (%s)", st, st0)
break
}
f, ok := st.FieldByName(n.Token2.Value)
if !ok {
ctx.errNode(n.PostfixExpression, "unknown or ambiguous field %q of type %s (%s)", n.Token2.Value, st, st0)
break
}
n.Field = f
ft := f.Type()
if f.IsBitField() {
ft = &bitFieldType{Type: ft, field: f.(*field)}
n.Operand = &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: ft}}
break
}
n.Operand = &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: ft, offset: op.Offset() + f.Offset()}}
case PostfixExpressionPSelect: // PostfixExpression "->" IDENTIFIER
op := n.PostfixExpression.check(ctx, false, isAsmArg)
n.IsSideEffectsFree = n.PostfixExpression.IsSideEffectsFree
if d := op.Declarator(); d != nil {
d.Read += ctx.readDelta
}
t := op.Type()
if k := t.Decay().Kind(); k == Invalid || k != Ptr {
//TODO report error
break
}
st := t.Elem()
if k := st.Kind(); k == Invalid || k != Struct && k != Union {
//TODO report error
break
}
f, ok := st.FieldByName(n.Token2.Value)
if !ok {
//TODO report error
break
}
n.Field = f
ft := f.Type()
if f.IsBitField() {
ft = &bitFieldType{Type: ft, field: f.(*field)}
}
n.Operand = &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: ft}}
case PostfixExpressionInc: // PostfixExpression "++"
op := n.PostfixExpression.check(ctx, false, isAsmArg)
if d := op.Declarator(); d != nil {
d.SubjectOfIncDec = true
d.Read += ctx.readDelta
d.Write++
}
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: op.Type()}
case PostfixExpressionDec: // PostfixExpression "--"
op := n.PostfixExpression.check(ctx, false, isAsmArg)
if d := op.Declarator(); d != nil {
d.SubjectOfIncDec = true
d.Read += ctx.readDelta
d.Write++
}
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: op.Type()}
case PostfixExpressionComplit: // '(' TypeName ')' '{' InitializerList ',' '}'
//TODO IsSideEffectsFree
if f := ctx.checkFn; f != nil {
f.CompositeLiterals = append(f.CompositeLiterals, n)
}
t := n.TypeName.check(ctx, false, false, nil)
var v *InitializerValue
if n.InitializerList != nil {
n.InitializerList.check(ctx, &n.InitializerList.list, t, Automatic, 0, nil, false)
n.InitializerList.setConstZero()
v = &InitializerValue{typ: t, initializer: n.InitializerList}
}
n.Operand = &lvalue{Operand: (&operand{abi: &ctx.cfg.ABI, typ: t, value: v}).normalize(ctx, n)}
case PostfixExpressionTypeCmp: // "__builtin_types_compatible_p" '(' TypeName ',' TypeName ')'
n.IsSideEffectsFree = true
t1 := n.TypeName.check(ctx, false, false, nil)
t2 := n.TypeName2.check(ctx, false, false, nil)
v := 0
switch {
case t1.IsArithmeticType() && t2.IsArithmeticType():
if t1.Kind() == t2.Kind() {
v = 1
}
default:
ctx.errNode(n, "ICE: __builtin_types_compatible_p(%v, %v)", t1, t2)
}
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(Int), value: Int64Value(v)}
case PostfixExpressionChooseExpr: // "__builtin_choose_expr" '(' ConstantExpression ',' AssignmentExpression ',' AssignmentExpression ')'
n.Operand = noOperand
expr1 := n.AssignmentExpression.check(ctx, isAsmArg)
if expr1 == nil {
ctx.errNode(n, "first argument of __builtin_choose_expr must be a constant expression")
break
}
if !expr1.IsConst() {
ctx.errNode(n, "first argument of __builtin_choose_expr must be a constant expression: %v %v", expr1.Value(), expr1.Type())
break
}
switch {
case expr1.IsNonZero():
n.Operand = n.AssignmentExpression2.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.AssignmentExpression2.IsSideEffectsFree
default:
n.Operand = n.AssignmentExpression3.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.AssignmentExpression3.IsSideEffectsFree
}
default:
panic(todo(""))
}
return n.Operand
}
func (n *PostfixExpression) index(ctx *context, pe, e Operand) Operand {
var x uintptr
hasx := false
switch v := e.Value().(type) {
case Int64Value:
x = uintptr(v)
hasx = true
case Uint64Value:
x = uintptr(v)
hasx = true
}
off := x * pe.Type().Elem().Size()
switch v := pe.Value().(type) {
case StringValue:
if hasx {
s := StringID(v).String()
var v byte
switch {
case x > uintptr(len(s)):
//TODO report err
return noOperand
case x < uintptr(len(s)):
v = s[x]
}
return (&operand{abi: &ctx.cfg.ABI, typ: pe.Type().Elem(), value: Int64Value(v)}).normalize(ctx, n)
}
case WideStringValue:
if hasx {
s := []rune(StringID(v).String())
var v rune
switch {
case x > uintptr(len(s)):
//TODO report err
return noOperand
case x < uintptr(len(s)):
v = s[x]
}
return (&operand{abi: &ctx.cfg.ABI, typ: pe.Type().Elem(), value: Int64Value(v)}).normalize(ctx, n)
}
}
if d := pe.Declarator(); d != nil && hasx {
return &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: pe.Type().Elem(), offset: pe.Offset() + off}, declarator: d}
}
return &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: pe.Type().Elem()}}
}
func (n *PostfixExpression) checkCall(ctx *context, nd Node, f Type, args []Operand, argList *ArgumentExpressionList) (r Operand) {
r = noOperand
switch f.Kind() {
case Invalid:
return noOperand
case Function:
// ok
case Ptr:
if e := f.Elem(); e.Kind() == Function {
f = e
break
}
ctx.errNode(nd, "expected function pointer type: %v, %v", f, f.Kind())
return r
default:
ctx.errNode(nd, "expected function type: %v, %v", f, f.Kind())
return r
}
r = &operand{abi: &ctx.cfg.ABI, typ: f.Result()}
params := f.Parameters()
if len(params) == 1 && params[0].Type().Kind() == Void {
params = nil
if len(args) != 0 {
//TODO report error
return r
}
}
for i, arg := range args {
var t Type
switch {
case i < len(params):
//TODO check assignability
t = params[i].Type().Decay()
default:
t = defaultArgumentPromotion(ctx, nd, arg).Type()
}
argList.AssignmentExpression.promote = t
argList = argList.ArgumentExpressionList
}
return r
}
func defaultArgumentPromotion(ctx *context, n Node, op Operand) Operand {
t := op.Type().Decay()
if arithmeticTypes[t.Kind()] {
if t.IsIntegerType() {
return op.integerPromotion(ctx, n)
}
switch t.Kind() {
case Float:
return op.convertTo(ctx, n, ctx.cfg.ABI.Type(Double))
}
}
return op
}
func (n *ArgumentExpressionList) check(ctx *context, f *Declarator, isAsmArg bool) (r []Operand) {
for ; n != nil; n = n.ArgumentExpressionList {
op := n.AssignmentExpression.check(ctx, isAsmArg)
if op.Type() == nil {
ctx.errNode(n, "operand has usupported, invalid or incomplete type")
op = noOperand
} else if op.Type().IsComplexType() {
ctx.checkFn.CallSiteComplexExpr = append(ctx.checkFn.CallSiteComplexExpr, n.AssignmentExpression)
}
r = append(r, op)
if !ctx.cfg.TrackAssignments {
continue
}
Inspect(n.AssignmentExpression, func(n Node, enter bool) bool {
if !enter {
return true
}
if x, ok := n.(*PrimaryExpression); ok {
x.Declarator().setLHS(f)
}
return true
})
}
return r
}
func (n *Expression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case ExpressionAssign: // AssignmentExpression
n.Operand = n.AssignmentExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.AssignmentExpression.IsSideEffectsFree
case ExpressionComma: // Expression ',' AssignmentExpression
op := n.Expression.check(ctx, isAsmArg)
n.Operand = n.AssignmentExpression.check(ctx, isAsmArg)
if !op.IsConst() && n.Operand.IsConst() {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: n.Operand.Type()}
}
n.IsSideEffectsFree = n.Expression.IsSideEffectsFree && n.AssignmentExpression.IsSideEffectsFree
default:
panic(todo(""))
}
return n.Operand
}
func (n *PrimaryExpression) check(ctx *context, implicitFunc, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case PrimaryExpressionIdent: // IDENTIFIER
n.IsSideEffectsFree = true
return n.checkIdentifier(ctx, implicitFunc)
case PrimaryExpressionInt: // INTCONST
n.IsSideEffectsFree = true
n.Operand = n.intConst(ctx)
case PrimaryExpressionFloat: // FLOATCONST
n.IsSideEffectsFree = true
if ctx.mode&mIntConstExpr != 0 && ctx.mode&mIntConstExprFloat == 0 {
ctx.errNode(n, "invalid integer constant expression")
break
}
n.Operand = n.floatConst(ctx)
case PrimaryExpressionEnum: // ENUMCONST
n.IsSideEffectsFree = true
if e := n.resolvedIn.enumerator(n.Token.Value, n.Token); e != nil {
op := e.Operand.(*operand)
op.typ = ctx.cfg.ABI.Type(Int) // [0] 6.4.4.3/2
n.Operand = op
break
}
//TODO report err
case PrimaryExpressionChar: // CHARCONST
n.IsSideEffectsFree = true
s := []rune(n.Token.Value.String())
var v Value
switch {
case s[0] <= 255:
// If an integer character constant contains a single character or escape
// sequence, its value is the one that results when an object with type char
// whose value is that of the single character or escape sequence is converted
// to type int.
switch {
case ctx.cfg.ABI.SignedChar:
v = Int64Value(int8(s[0]))
default:
v = Int64Value(s[0])
}
default:
v = Int64Value(s[0])
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(Int), value: v}).normalize(ctx, n)
case PrimaryExpressionLChar: // LONGCHARCONST
n.IsSideEffectsFree = true
s := []rune(n.Token.Value.String())
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: wcharT(ctx, n.lexicalScope, n.Token), value: Int64Value(s[0])}).normalize(ctx, n)
case PrimaryExpressionString: // STRINGLITERAL
n.IsSideEffectsFree = true
ctx.not(n, mIntConstExpr)
typ := ctx.cfg.ABI.Type(Char)
b := typ.base()
b.align = byte(typ.Align())
b.fieldAlign = byte(typ.FieldAlign())
b.kind = byte(Array)
sz := uintptr(len(n.Token.Value.String())) + 1 //TODO set sz in cpp
arr := &arrayType{typeBase: b, decay: ctx.cfg.ABI.Ptr(n, typ), elem: typ, length: sz}
arr.setLen(sz)
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: arr, value: StringValue(n.Token.Value)}).normalize(ctx, n)
case PrimaryExpressionLString: // LONGSTRINGLITERAL
n.IsSideEffectsFree = true
ctx.not(n, mIntConstExpr)
typ := wcharT(ctx, n.lexicalScope, n.Token)
b := typ.base()
b.align = byte(typ.Align())
b.fieldAlign = byte(typ.FieldAlign())
b.kind = byte(Array)
sz := uintptr(len([]rune(n.Token.Value.String()))) + 1 //TODO set sz in cpp
arr := &arrayType{typeBase: b, decay: ctx.cfg.ABI.Ptr(n, typ), elem: typ, length: sz}
arr.setLen(sz)
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: arr, value: WideStringValue(n.Token.Value)}).normalize(ctx, n)
case PrimaryExpressionExpr: // '(' Expression ')'
n.Operand = n.Expression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.Expression.IsSideEffectsFree
case PrimaryExpressionStmt: // '(' CompoundStatement ')'
//TODO IsSideEffectsFree
ctx.not(n, mIntConstExpr)
n.Operand = n.CompoundStatement.check(ctx)
if n.Operand == noOperand {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(Void)}
}
default:
panic(todo(""))
}
return n.Operand
}
func wcharT(ctx *context, s Scope, tok Token) Type {
if t := ctx.wcharT; t != nil {
return t
}
t := ctx.stddef(idWCharT, s, tok)
if t.Kind() != Invalid {
ctx.wcharT = t
}
return t
}
func (n *PrimaryExpression) checkIdentifier(ctx *context, implicitFunc bool) Operand {
ctx.not(n, mIntConstExpr)
var d *Declarator
nm := n.Token.Value
if n.resolvedIn == nil {
if ctx.cfg.RejectLateBinding && !ctx.cfg.ignoreUndefinedIdentifiers {
ctx.errNode(n, "front-end: undefined: %s", n.Token.Value)
return noOperand
}
out:
for s := n.lexicalScope; s != nil; s = s.Parent() {
for _, v := range s[nm] {
switch x := v.(type) {
case *Enumerator:
break out
case *Declarator:
if x.IsTypedefName {
d = nil
break out
}
n.resolvedIn = s
n.resolvedTo = x
d = x
t := d.Type()
if t != nil && t.Kind() == Function {
if d.fnDef {
break out
}
continue
}
if t != nil && !t.IsIncomplete() {
break out
}
case *EnumSpecifier, *StructOrUnionSpecifier, *StructDeclarator, *LabeledStatement:
// nop
default:
panic(todo(""))
}
}
}
}
if d == nil && n.resolvedIn != nil {
d = n.resolvedIn.declarator(n.Token.Value, n.Token)
}
if d == nil && !ctx.cfg.DisableBuiltinResolution {
d = builtin(ctx, nm)
}
if d == nil {
_, ok := gccKeywords[nm]
if !ok && implicitFunc {
d := &Declarator{
DirectDeclarator: &DirectDeclarator{
lexicalScope: ctx.ast.Scope,
Case: DirectDeclaratorFuncIdent,
DirectDeclarator: &DirectDeclarator{
lexicalScope: ctx.ast.Scope,
Case: DirectDeclaratorIdent,
Token: Token{Value: nm},
},
},
implicit: true,
}
ed := &ExternalDeclaration{
Case: ExternalDeclarationDecl,
Declaration: &Declaration{
DeclarationSpecifiers: &DeclarationSpecifiers{
Case: DeclarationSpecifiersTypeSpec,
TypeSpecifier: &TypeSpecifier{
Case: TypeSpecifierInt,
},
},
InitDeclaratorList: &InitDeclaratorList{
InitDeclarator: &InitDeclarator{
Case: InitDeclaratorDecl,
Declarator: d,
},
},
},
}
ed.check(ctx)
n.Operand = &funcDesignator{Operand: &operand{abi: &ctx.cfg.ABI, typ: d.Type()}, declarator: d}
return n.Operand
}
if !ctx.cfg.ignoreUndefinedIdentifiers {
ctx.errNode(n, "front-end: undefined: %s", n.Token.Value)
}
return noOperand
}
if d == nil {
if !ctx.cfg.ignoreUndefinedIdentifiers {
ctx.errNode(n, "front-end: undefined: %s", n.Token.Value)
}
return noOperand
}
switch d.Linkage {
case Internal:
if d.IsStatic() {
break
}
fallthrough
case External:
s := n.resolvedIn
if s.Parent() == nil {
break
}
for s.Parent() != nil {
s = s.Parent()
}
if d2 := s.declarator(n.Token.Value, Token{}); d2 != nil {
d = d2
}
}
if d.Type() == nil {
ctx.errNode(d, "unresolved type of: %s", n.Token.Value)
return noOperand
}
d.Read += ctx.readDelta
switch t := d.Type(); t.Kind() {
case Function:
n.Operand = &funcDesignator{Operand: &operand{abi: &ctx.cfg.ABI, typ: t}, declarator: d}
default:
n.Operand = &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: t}, declarator: d}
}
if !ctx.capture {
return n.Operand
}
for s := n.lexicalScope; s != nil; s = s.Parent() {
if _, ok := s[nm]; ok {
return n.Operand // d in fn scope
}
if _, ok := s[idClosure]; ok { // d in outer scope
if ctx.closure == nil {
ctx.closure = map[StringID]struct{}{} //TODO capture the PrimaryExpression, not the declarator name
}
ctx.closure[nm] = struct{}{}
return n.Operand
}
}
panic(todo(""))
}
func builtin(ctx *context, nm StringID) *Declarator {
id := dict.sid("__builtin_" + nm.String())
a := ctx.ast.Scope[id]
if len(a) == 0 {
return nil
}
switch x := a[0].(type) {
case *Declarator:
if x.fnDef || x.IsFunctionPrototype() {
return x
}
}
return nil
}
func (n *PrimaryExpression) floatConst(ctx *context) Operand {
s0 := n.Token.String()
s := s0
var cplx, suff string
loop2:
for i := len(s) - 1; i > 0; i-- {
switch s0[i] {
case 'l', 'L':
s = s[:i]
if ctx.cfg.LongDoubleIsDouble {
break
}
suff += "l"
case 'f', 'F':
s = s[:i]
suff += "f"
case 'i', 'I', 'j', 'J':
s = s[:i]
cplx += "i"
default:
break loop2
}
}
if len(suff) > 1 || len(cplx) > 1 {
ctx.errNode(n, "invalid number format")
return noOperand
}
var v float64
var err error
prec := uint(64)
if suff == "l" {
prec = longDoublePrec
}
var bf *big.Float
switch {
case suff == "l" || strings.Contains(s, "p") || strings.Contains(s, "P"):
bf, _, err = big.ParseFloat(strings.ToLower(s), 0, prec, big.ToNearestEven)
if err == nil {
v, _ = bf.Float64()
}
default:
v, err = strconv.ParseFloat(s, 64)
}
if err != nil {
switch {
case !strings.HasPrefix(s, "-") && strings.Contains(err.Error(), "value out of range"):
// linux_386/usr/include/math.h
//
// /* Value returned on overflow. With IEEE 754 floating point, this is
// +Infinity, otherwise the largest representable positive value. */
// #if __GNUC_PREREQ (3, 3)
// # define HUGE_VAL (__builtin_huge_val ())
// #else
// /* This may provoke compiler warnings, and may not be rounded to
// +Infinity in all IEEE 754 rounding modes, but is the best that can
// be done in ISO C while remaining a constant expression. 10,000 is
// greater than the maximum (decimal) exponent for all supported
// floating-point formats and widths. */
// # define HUGE_VAL 1e10000
// #endif
v = math.Inf(1)
default:
ctx.errNode(n, "%v", err)
return noOperand
}
}
// [0]6.4.4.2
switch suff {
case "":
switch {
case cplx != "":
return (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(ComplexDouble), value: Complex128Value(complex(0, v))}).normalize(ctx, n)
default:
return (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(Double), value: Float64Value(v)}).normalize(ctx, n)
}
case "f":
switch {
case cplx != "":
return (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(ComplexFloat), value: Complex64Value(complex(0, float32(v)))}).normalize(ctx, n)
default:
return (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(Float), value: Float32Value(float32(v))}).normalize(ctx, n)
}
case "l":
switch {
case cplx != "":
return (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(ComplexLongDouble), value: Complex256Value{&Float128Value{N: big.NewFloat(0)}, &Float128Value{N: bf}}}).normalize(ctx, n)
default:
return (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(LongDouble), value: &Float128Value{N: bf}}).normalize(ctx, n)
}
default:
//dbg("%q %q %q %q %v", s0, s, suff, cplx, err)
panic("TODO")
}
}
func (n *PrimaryExpression) intConst(ctx *context) Operand {
var val uint64
s0 := n.Token.String()
s := strings.TrimRight(s0, "uUlL")
var decadic bool
switch {
case strings.HasPrefix(s, "0x") || strings.HasPrefix(s, "0X"):
var err error
if val, err = strconv.ParseUint(s[2:], 16, 64); err != nil {
ctx.errNode(n, "%v", err)
return nil
}
case strings.HasPrefix(s, "0b") || strings.HasPrefix(s, "0B"):
var err error
if val, err = strconv.ParseUint(s[2:], 2, 64); err != nil {
ctx.errNode(n, "%v", err)
return nil
}
case strings.HasPrefix(s, "0"):
var err error
if val, err = strconv.ParseUint(s, 8, 64); err != nil {
ctx.errNode(n, "%v", err)
return nil
}
default:
decadic = true
var err error
if val, err = strconv.ParseUint(s, 10, 64); err != nil {
ctx.errNode(n, "%v", err)
return nil
}
}
suffix := s0[len(s):]
switch suffix = strings.ToLower(suffix); suffix {
case "":
if decadic {
return intConst(ctx, n, s0, val, Int, Long, LongLong)
}
return intConst(ctx, n, s0, val, Int, UInt, Long, ULong, LongLong, ULongLong)
case "u":
return intConst(ctx, n, s0, val, UInt, ULong, ULongLong)
case "l":
if decadic {
return intConst(ctx, n, s0, val, Long, LongLong)
}
return intConst(ctx, n, s0, val, Long, ULong, LongLong, ULongLong)
case "lu", "ul":
return intConst(ctx, n, s0, val, ULong, ULongLong)
case "ll":
if decadic {
return intConst(ctx, n, s0, val, LongLong)
}
return intConst(ctx, n, s0, val, LongLong, ULongLong)
case "llu", "ull":
return intConst(ctx, n, s0, val, ULongLong)
default:
ctx.errNode(n, "invalid suffix: %v", s0)
return nil
}
}
func intConst(ctx *context, n Node, s string, val uint64, list ...Kind) Operand {
abi := ctx.cfg.ABI
b := bits.Len64(val)
for _, k := range list {
sign := 0
if abi.isSignedInteger(k) {
sign = 1
}
if abi.size(k)*8 >= b+sign {
switch {
case sign == 0:
return (&operand{abi: &ctx.cfg.ABI, typ: abi.Type(k), value: Uint64Value(val)}).normalize(ctx, n)
default:
return (&operand{abi: &ctx.cfg.ABI, typ: abi.Type(k), value: Int64Value(val)}).normalize(ctx, n)
}
}
}
ctx.errNode(n, "invalid integer constant %v", s)
return nil
}
func (n *ConditionalExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case ConditionalExpressionLOr: // LogicalOrExpression
n.Operand = n.LogicalOrExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.LogicalOrExpression.IsSideEffectsFree
case ConditionalExpressionCond: // LogicalOrExpression '?' Expression ':' ConditionalExpression
op := n.LogicalOrExpression.check(ctx, isAsmArg)
// The first operand shall have scalar type.
if !op.Type().Decay().IsScalarType() {
//TODO report error
break
}
a := n.Expression.check(ctx, isAsmArg)
b := n.ConditionalExpression.check(ctx, isAsmArg)
at := a.Type().Decay()
bt := b.Type().Decay()
n.IsSideEffectsFree = n.LogicalOrExpression.IsSideEffectsFree && (n.Expression == nil || n.Expression.IsSideEffectsFree) && n.ConditionalExpression.IsSideEffectsFree
var val Value
if op.Value() != nil {
switch {
case op.IsZero():
n.IsSideEffectsFree = n.LogicalOrExpression.IsSideEffectsFree && n.ConditionalExpression.IsSideEffectsFree
default:
n.IsSideEffectsFree = n.LogicalOrExpression.IsSideEffectsFree && n.Expression.IsSideEffectsFree
}
if a.Value() != nil && b.Value() != nil { //TODO not needed both non nil
switch {
case op.IsZero():
val = b.Value()
default:
val = a.Value()
}
}
}
if a.Type().Kind() == Invalid && b.Type().Kind() == Invalid {
return noOperand
}
// One of the following shall hold for the second and third
// operands:
//TODO — both operands have the same structure or union type;
//TODO — one operand is a pointer to an object or incomplete type and the other is a pointer to a
//TODO qualified or unqualified version of void.
switch {
// — both operands have arithmetic type;
case a.Type().IsArithmeticType() && b.Type().IsArithmeticType():
// If both the second and third operands have
// arithmetic type, the result type that would be
// determined by the usual arithmetic conversions, were
// they applied to those two operands,
// is the type of the result.
op, _ := usualArithmeticConversions(ctx, n, a, b, true)
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: op.Type(), value: val}).normalize(ctx, n)
// — both operands have void type;
case a.Type().Kind() == Void && b.Type().Kind() == Void:
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: val}).normalize(ctx, n)
// — one operand is a pointer and the other is a null pointer constant;
case (a.Type().Kind() == Ptr || a.Type().Kind() == Function) && b.IsZero():
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: val}).normalize(ctx, n)
case (b.Type().Kind() == Ptr || b.Type().Kind() == Function) && a.IsZero():
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: b.Type(), value: val}).normalize(ctx, n)
// — both operands are pointers to qualified or unqualified versions of compatible types;
case at.Kind() == Ptr && bt.Kind() == Ptr:
//TODO check compatible
//TODO if !at.isCompatibleIgnoreQualifiers(bt) {
//TODO trc("%v: XXXX %v ? %v", n.Token2.Position(), at, bt)
//TODO ctx.assignmentCompatibilityErrorCond(&n.Token2, at, bt)
//TODO }
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: n.Expression.Operand.Type(), value: val}).normalize(ctx, n)
case a.Type().Kind() == Ptr && a.Type().Elem().Kind() == Function && b.Type().Kind() == Function:
//TODO check compatible
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: val}).normalize(ctx, n)
case b.Type().Kind() == Ptr && b.Type().Elem().Kind() == Function && a.Type().Kind() == Function:
//TODO check compatible
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: b.Type(), value: val}).normalize(ctx, n)
case a.Type().Kind() != Invalid:
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: val}).normalize(ctx, n)
case b.Type().Kind() != Invalid:
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: b.Type(), value: val}).normalize(ctx, n)
default:
panic(todo(""))
}
default:
panic(todo(""))
}
return n.Operand
}
func (n *LogicalOrExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case LogicalOrExpressionLAnd: // LogicalAndExpression
n.Operand = n.LogicalAndExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.LogicalAndExpression.IsSideEffectsFree
case LogicalOrExpressionLOr: // LogicalOrExpression "||" LogicalAndExpression
lop := n.LogicalOrExpression.check(ctx, isAsmArg)
rop := n.LogicalAndExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.LogicalOrExpression.IsSideEffectsFree && n.LogicalAndExpression.IsSideEffectsFree ||
lop.Value() != nil && lop.IsNonZero() && n.LogicalOrExpression.IsSideEffectsFree
var v Value
if lop.Value() != nil && rop.Value() != nil { //TODO lop.IsNonZero shortcut
switch {
case n.LogicalOrExpression.Operand.IsNonZero() || n.LogicalAndExpression.Operand.IsNonZero():
v = Int64Value(1)
default:
v = Int64Value(0)
}
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(Int), value: v}).normalize(ctx, n)
default:
panic(todo(""))
}
return n.Operand
}
func (n *LogicalAndExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case LogicalAndExpressionOr: // InclusiveOrExpression
n.Operand = n.InclusiveOrExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.InclusiveOrExpression.IsSideEffectsFree
case LogicalAndExpressionLAnd: // LogicalAndExpression "&&" InclusiveOrExpression
lop := n.LogicalAndExpression.check(ctx, isAsmArg)
rop := n.InclusiveOrExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.LogicalAndExpression.IsSideEffectsFree && n.InclusiveOrExpression.IsSideEffectsFree ||
lop.Value() != nil && lop.IsZero() && n.LogicalAndExpression.IsSideEffectsFree
var v Value
if lop.Value() != nil && rop.Value() != nil { //TODO lop.IsZero shortcut
switch {
case n.LogicalAndExpression.Operand.IsNonZero() && n.InclusiveOrExpression.Operand.IsNonZero():
v = Int64Value(1)
default:
v = Int64Value(0)
}
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(Int), value: v}).normalize(ctx, n)
default:
panic(todo(""))
}
return n.Operand
}
func (n *InclusiveOrExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case InclusiveOrExpressionXor: // ExclusiveOrExpression
n.Operand = n.ExclusiveOrExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.ExclusiveOrExpression.IsSideEffectsFree
case InclusiveOrExpressionOr: // InclusiveOrExpression '|' ExclusiveOrExpression
a := n.InclusiveOrExpression.check(ctx, isAsmArg)
b := n.ExclusiveOrExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.InclusiveOrExpression.IsSideEffectsFree && n.ExclusiveOrExpression.IsSideEffectsFree
n.promote = noType
if a.Type().Kind() == Vector || b.Type().Kind() == Vector {
n.Operand = checkBinaryVectorIntegerArtithmetic(ctx, n, a, b)
break
}
if !a.Type().IsIntegerType() || !b.Type().IsIntegerType() {
ctx.errNode(n, "operands must be integers")
break
}
a, b = usualArithmeticConversions(ctx, &n.Token, a, b, true)
n.promote = a.Type()
if a.Value() == nil || b.Value() == nil {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: a.Type()}
break
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: a.Value().or(b.Value())}).normalize(ctx, n)
default:
panic(todo(""))
}
return n.Operand
}
func checkBinaryVectorIntegerArtithmetic(ctx *context, n Node, a, b Operand) Operand {
var rt Type
if a.Type().Kind() == Vector {
rt = a.Type()
a = &operand{abi: &ctx.cfg.ABI, typ: a.Type().Elem()}
}
if b.Type().Kind() == Vector {
if rt == nil {
rt = b.Type()
}
b = &operand{abi: &ctx.cfg.ABI, typ: b.Type().Elem()}
}
a, b = usualArithmeticConversions(ctx, n, a, b, true)
if !a.Type().IsIntegerType() || !b.Type().IsIntegerType() {
ctx.errNode(n, "operands must be integers")
}
return &operand{abi: &ctx.cfg.ABI, typ: rt}
}
func (n *ExclusiveOrExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case ExclusiveOrExpressionAnd: // AndExpression
n.Operand = n.AndExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.AndExpression.IsSideEffectsFree
case ExclusiveOrExpressionXor: // ExclusiveOrExpression '^' AndExpression
a := n.ExclusiveOrExpression.check(ctx, isAsmArg)
b := n.AndExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.ExclusiveOrExpression.IsSideEffectsFree && n.AndExpression.IsSideEffectsFree
if a.Type().Kind() == Vector || b.Type().Kind() == Vector {
n.Operand = checkBinaryVectorIntegerArtithmetic(ctx, n, a, b)
break
}
if !a.Type().IsIntegerType() || !b.Type().IsIntegerType() {
ctx.errNode(n, "operands must be integers")
break
}
a, b = usualArithmeticConversions(ctx, &n.Token, a, b, true)
n.promote = a.Type()
if a.Value() == nil || b.Value() == nil {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: a.Type()}
break
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: a.Value().xor(b.Value())}).normalize(ctx, n)
default:
panic(todo(""))
}
return n.Operand
}
func (n *AndExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case AndExpressionEq: // EqualityExpression
n.Operand = n.EqualityExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.EqualityExpression.IsSideEffectsFree
case AndExpressionAnd: // AndExpression '&' EqualityExpression
a := n.AndExpression.check(ctx, isAsmArg)
b := n.EqualityExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.AndExpression.IsSideEffectsFree && n.EqualityExpression.IsSideEffectsFree
if a.Type().Kind() == Vector || b.Type().Kind() == Vector {
n.Operand = checkBinaryVectorIntegerArtithmetic(ctx, n, a, b)
break
}
if !a.Type().IsIntegerType() || !b.Type().IsIntegerType() {
ctx.errNode(n, "operands must be integers")
break
}
a, b = usualArithmeticConversions(ctx, &n.Token, a, b, true)
n.promote = a.Type()
if a.Value() == nil || b.Value() == nil {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: a.Type()}
break
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: a.Value().and(b.Value())}).normalize(ctx, n)
default:
panic(todo(""))
}
return n.Operand
}
func (n *EqualityExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
switch n.Case {
case EqualityExpressionRel: // RelationalExpression
n.Operand = n.RelationalExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.RelationalExpression.IsSideEffectsFree
case
EqualityExpressionEq, // EqualityExpression "==" RelationalExpression
EqualityExpressionNeq: // EqualityExpression "!=" RelationalExpression
op := &operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(Int)}
n.Operand = op
lo := n.EqualityExpression.check(ctx, isAsmArg)
ro := n.RelationalExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.EqualityExpression.IsSideEffectsFree && n.RelationalExpression.IsSideEffectsFree
lt := lo.Type().Decay()
rt := ro.Type().Decay()
n.promote = noType
ok := false
switch {
case lo.Type().Kind() == Vector && ro.Type().Kind() == Vector:
n.Operand = checkVectorComparison(ctx, n, lo.Type(), ro.Type())
return n.Operand
case lt.IsArithmeticType() && rt.IsArithmeticType():
op, _ := usualArithmeticConversions(ctx, n, lo, ro, true)
n.promote = op.Type()
ok = true
case lt.Kind() == Ptr && (rt.Kind() == Ptr || rt.IsIntegerType()):
n.promote = lt
//TODO
case (lt.Kind() == Ptr || lt.IsIntegerType()) && rt.Kind() == Ptr:
n.promote = rt
//TODO
case lt.Kind() == Function:
n.promote = ctx.cfg.ABI.Ptr(n, lt)
case rt.Kind() == Function:
n.promote = ctx.cfg.ABI.Ptr(n, rt)
default:
//TODO report error
}
if n.promote.Kind() == Invalid || !ok {
break
}
lo = lo.convertTo(ctx, n, n.promote)
ro = ro.convertTo(ctx, n, n.promote)
if a, b := lo.Value(), ro.Value(); a != nil && b != nil {
switch n.Case {
case EqualityExpressionEq: // EqualityExpression "==" RelationalExpression
op.value = a.eq(b)
case EqualityExpressionNeq: // EqualityExpression "!=" RelationalExpression
op.value = a.neq(b)
}
}
default:
panic(todo(""))
}
return n.Operand
}
func checkVectorComparison(ctx *context, n Node, a, b Type) (r Operand) {
a = a.underlyingType()
b = b.underlyingType()
rt := *a.(*vectorType)
rt.elem = ctx.cfg.ABI.Type(Int)
r = &operand{abi: &ctx.cfg.ABI, typ: &rt}
x := a.Elem()
y := b.Elem()
if x.Kind() != y.Kind() {
ctx.errNode(n, "cannot compare vectors of different element types: %s and %s", x, y)
}
return r
}
func (n *RelationalExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case RelationalExpressionShift: // ShiftExpression
n.Operand = n.ShiftExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.ShiftExpression.IsSideEffectsFree
case
RelationalExpressionLt, // RelationalExpression '<' ShiftExpression
RelationalExpressionGt, // RelationalExpression '>' ShiftExpression
RelationalExpressionLeq, // RelationalExpression "<=" ShiftExpression
RelationalExpressionGeq: // RelationalExpression ">=" ShiftExpression
n.promote = noType
op := &operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Type(Int)}
n.Operand = op
lo := n.RelationalExpression.check(ctx, isAsmArg)
ro := n.ShiftExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.RelationalExpression.IsSideEffectsFree && n.ShiftExpression.IsSideEffectsFree
if lo.Type().Kind() == Vector && ro.Type().Kind() == Vector {
n.Operand = checkVectorComparison(ctx, n, lo.Type(), ro.Type())
break
}
if lo.Type().IsComplexType() || ro.Type().IsComplexType() {
ctx.errNode(&n.Token, "complex numbers are not ordered")
break
}
lt := lo.Type().Decay()
rt := ro.Type().Decay()
n.promote = noType
ok := true
switch {
case lt.IsRealType() && rt.IsRealType():
op, _ := usualArithmeticConversions(ctx, n, lo, ro, true)
n.promote = op.Type()
case lt.Kind() == Ptr && (rt.Kind() == Ptr || rt.IsIntegerType()):
n.promote = lt
//TODO
case (lt.Kind() == Ptr || lt.IsIntegerType()) && rt.Kind() == Ptr:
n.promote = rt
//TODO
default:
//TODO report error
ok = false
}
if n.promote.Kind() == Invalid || !ok {
break
}
lo = lo.convertTo(ctx, n, n.promote)
ro = ro.convertTo(ctx, n, n.promote)
if a, b := lo.Value(), ro.Value(); a != nil && b != nil {
switch n.Case {
case RelationalExpressionLt: // RelationalExpression '<' ShiftExpression
op.value = a.lt(b)
case RelationalExpressionGt: // RelationalExpression '>' ShiftExpression
op.value = a.gt(b)
case RelationalExpressionLeq: // RelationalExpression "<=" ShiftExpression
op.value = a.le(b)
case RelationalExpressionGeq: // RelationalExpression ">=" ShiftExpression
op.value = a.ge(b)
}
}
default:
panic(todo(""))
}
return n.Operand
}
func (n *ShiftExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case ShiftExpressionAdd: // AdditiveExpression
n.Operand = n.AdditiveExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.AdditiveExpression.IsSideEffectsFree
case ShiftExpressionLsh: // ShiftExpression "<<" AdditiveExpression
a := n.ShiftExpression.check(ctx, isAsmArg)
b := n.AdditiveExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.ShiftExpression.IsSideEffectsFree && n.AdditiveExpression.IsSideEffectsFree
if a.Type().Kind() == Vector || b.Type().Kind() == Vector {
n.Operand = checkBinaryVectorIntegerArtithmetic(ctx, n, a, b)
break
}
if !a.Type().IsIntegerType() || !b.Type().IsIntegerType() {
//TODO report err
break
}
a = a.integerPromotion(ctx, n)
b = b.integerPromotion(ctx, n)
n.promote = b.Type()
if a.Value() == nil || b.Value() == nil {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: a.Type()}
break
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: a.Value().lsh(b.Value())}).normalize(ctx, n)
case ShiftExpressionRsh: // ShiftExpression ">>" AdditiveExpression
a := n.ShiftExpression.check(ctx, isAsmArg)
b := n.AdditiveExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.ShiftExpression.IsSideEffectsFree && n.AdditiveExpression.IsSideEffectsFree
if a.Type().Kind() == Vector || b.Type().Kind() == Vector {
n.Operand = checkBinaryVectorIntegerArtithmetic(ctx, n, a, b)
break
}
if !a.Type().IsIntegerType() || !b.Type().IsIntegerType() {
//TODO report err
break
}
a = a.integerPromotion(ctx, n)
b = b.integerPromotion(ctx, n)
n.promote = b.Type()
if a.Value() == nil || b.Value() == nil {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: a.Type()}
break
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: a.Value().rsh(b.Value())}).normalize(ctx, n)
default:
panic(todo(""))
}
return n.Operand
}
func (n *AdditiveExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case AdditiveExpressionMul: // MultiplicativeExpression
n.Operand = n.MultiplicativeExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.MultiplicativeExpression.IsSideEffectsFree
case AdditiveExpressionAdd: // AdditiveExpression '+' MultiplicativeExpression
n.promote = noType
a := n.AdditiveExpression.check(ctx, isAsmArg)
b := n.MultiplicativeExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.AdditiveExpression.IsSideEffectsFree && n.MultiplicativeExpression.IsSideEffectsFree
if a.Type().Kind() == Vector || b.Type().Kind() == Vector {
n.Operand = checkBinaryVectorArtithmetic(ctx, n, a, b)
break
}
if t := a.Type().Decay(); t.Kind() == Ptr && b.Type().IsScalarType() {
var x uintptr
hasx := false
switch v := b.Value().(type) {
case Int64Value:
x = uintptr(v)
hasx = true
case Uint64Value:
x = uintptr(v)
hasx = true
}
off := x * a.Type().Elem().Size()
switch y := a.Value().(type) {
case StringValue:
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Ptr(n, a.Type().Elem()), value: y, offset: a.Offset() + off}
default:
switch {
case a.Value() == nil && a.Declarator() != nil && hasx:
n.Operand = &lvalue{Operand: &operand{abi: &ctx.cfg.ABI, typ: ctx.cfg.ABI.Ptr(n, a.Type().Elem()), offset: a.Offset() + off}, declarator: a.Declarator()}
default:
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: t}
}
}
break
}
if t := b.Type().Decay(); t.Kind() == Ptr && a.Type().IsScalarType() {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: t}
break
}
if !a.Type().IsArithmeticType() || !b.Type().IsArithmeticType() {
//TODO report error
break
}
a, b = usualArithmeticConversions(ctx, &n.Token, a, b, true)
n.promote = a.Type()
if a.Value() == nil || b.Value() == nil {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: a.Type()}
break
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: a.Value().add(b.Value())}).normalize(ctx, n)
case AdditiveExpressionSub: // AdditiveExpression '-' MultiplicativeExpression
n.promote = noType
a := n.AdditiveExpression.check(ctx, isAsmArg)
b := n.MultiplicativeExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.AdditiveExpression.IsSideEffectsFree && n.MultiplicativeExpression.IsSideEffectsFree
if a.Type().Kind() == Vector || b.Type().Kind() == Vector {
n.Operand = checkBinaryVectorArtithmetic(ctx, n, a, b)
break
}
if a.Type().Decay().Kind() == Ptr && b.Type().Decay().Kind() == Ptr {
var val Value
if a.Value() != nil && b.Value() != nil {
ae := a.Type().Decay().Elem()
be := b.Type().Decay().Elem()
switch {
case ae.Size() == be.Size():
var d int64
switch x := a.Value().(type) {
case Int64Value:
d = int64(x)
case Uint64Value:
d = int64(x)
}
switch x := b.Value().(type) {
case Int64Value:
val = Int64Value(d - int64(x))
case Uint64Value:
val = Int64Value(d - int64(x))
}
default:
ctx.errNode(n, "difference of pointers of differently sized elements")
}
}
pt := ptrdiffT(ctx, n.lexicalScope, n.Token)
n.promote = pt
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: pt, value: val}
if val != nil {
n.Operand = n.Operand.convertTo(ctx, n, a.Type())
}
break
}
if t := a.Type().Decay(); t.Kind() == Ptr && b.Type().IsScalarType() {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: t}
break
}
if !a.Type().IsArithmeticType() || !b.Type().IsArithmeticType() {
//TODO report error
break
}
a, b = usualArithmeticConversions(ctx, &n.Token, a, b, true)
n.promote = a.Type()
if a.Value() == nil || b.Value() == nil {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: a.Type()}
break
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: a.Value().sub(b.Value())}).normalize(ctx, n)
default:
panic(todo(""))
}
return n.Operand
}
func checkBinaryVectorArtithmetic(ctx *context, n Node, a, b Operand) Operand {
var rt Type
if a.Type().Kind() == Vector {
rt = a.Type()
a = &operand{abi: &ctx.cfg.ABI, typ: a.Type().Elem()}
}
if b.Type().Kind() == Vector {
if rt == nil {
rt = b.Type()
}
b = &operand{abi: &ctx.cfg.ABI, typ: b.Type().Elem()}
}
usualArithmeticConversions(ctx, n, a, b, true)
return &operand{abi: &ctx.cfg.ABI, typ: rt}
}
func ptrdiffT(ctx *context, s Scope, tok Token) Type {
if t := ctx.ptrdiffT; t != nil {
return t
}
t := ctx.stddef(idPtrdiffT, s, tok)
if t.Kind() != Invalid {
ctx.ptrdiffT = t
}
return t
}
func (n *MultiplicativeExpression) check(ctx *context, isAsmArg bool) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand //TODO-
switch n.Case {
case MultiplicativeExpressionCast: // CastExpression
n.Operand = n.CastExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.CastExpression.IsSideEffectsFree
case MultiplicativeExpressionMul: // MultiplicativeExpression '*' CastExpression
a := n.MultiplicativeExpression.check(ctx, isAsmArg)
b := n.CastExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.MultiplicativeExpression.IsSideEffectsFree && n.CastExpression.IsSideEffectsFree
if a.Type().Kind() == Vector || b.Type().Kind() == Vector {
n.Operand = checkBinaryVectorArtithmetic(ctx, n, a, b)
break
}
if !a.Type().IsArithmeticType() || !b.Type().IsArithmeticType() {
break
}
a, b = usualArithmeticConversions(ctx, &n.Token, a, b, true)
n.promote = a.Type()
if a.Value() == nil || b.Value() == nil {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: a.Type()}
break
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: a.Value().mul(b.Value())}).normalize(ctx, n)
case MultiplicativeExpressionDiv: // MultiplicativeExpression '/' CastExpression
a := n.MultiplicativeExpression.check(ctx, isAsmArg)
b := n.CastExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.MultiplicativeExpression.IsSideEffectsFree && n.CastExpression.IsSideEffectsFree
if a.Type().Kind() == Vector || b.Type().Kind() == Vector {
n.Operand = checkBinaryVectorArtithmetic(ctx, n, a, b)
break
}
if !a.Type().IsArithmeticType() || !b.Type().IsArithmeticType() {
break
}
a, b = usualArithmeticConversions(ctx, &n.Token, a, b, true)
n.promote = a.Type()
if a.Value() == nil || b.Value() == nil {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: a.Type()}
break
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: a.Value().div(b.Value())}).normalize(ctx, n)
case MultiplicativeExpressionMod: // MultiplicativeExpression '%' CastExpression
a := n.MultiplicativeExpression.check(ctx, isAsmArg)
b := n.CastExpression.check(ctx, isAsmArg)
n.IsSideEffectsFree = n.MultiplicativeExpression.IsSideEffectsFree && n.CastExpression.IsSideEffectsFree
if a.Type().Kind() == Vector || b.Type().Kind() == Vector {
n.Operand = checkBinaryVectorArtithmetic(ctx, n, a, b)
break
}
if !a.Type().IsArithmeticType() || !b.Type().IsArithmeticType() {
break
}
if !a.Type().IsIntegerType() || !b.Type().IsIntegerType() {
ctx.errNode(&n.Token, "the operands of the %% operator shall have integer type.") // [0] 6.5.5, 2
break
}
a, b = usualArithmeticConversions(ctx, &n.Token, a, b, true)
n.promote = a.Type()
if a.Value() == nil || b.Value() == nil {
n.Operand = &operand{abi: &ctx.cfg.ABI, typ: a.Type()}
break
}
n.Operand = (&operand{abi: &ctx.cfg.ABI, typ: a.Type(), value: a.Value().mod(b.Value())}).normalize(ctx, n)
default:
panic(todo(""))
}
return n.Operand
}
func (n *Declarator) check(ctx *context, td typeDescriptor, typ Type, tld bool) Type {
if n == nil {
n.typ = ctx.cfg.ABI.Type(Int)
return noType
}
typ = n.Pointer.check(ctx, typ)
n.td = td
if attr := n.AttributeSpecifierList.check(ctx, typ.baseP()); len(attr) != 0 {
typ = &attributedType{typ, attr}
}
n.typ = n.DirectDeclarator.check(ctx, typ)
hasStorageSpecifiers := td.typedef() || td.extern() || td.static() ||
td.auto() || td.register() || td.threadLocal()
typ = n.typ
if typ == nil {
n.typ = ctx.cfg.ABI.Type(Int)
ctx.errNode(n, "declarator has unsupported, invalid or incomplete type")
return noType
}
if typ.Kind() == Array && typ.IsVLA() {
if f := ctx.checkFn; f != nil {
f.VLAs = append(f.VLAs, n)
}
}
// 6.2.2 Linkages of identifiers
n.Linkage = None
switch {
case tld && td.static():
// 3: If the declaration of a file scope identifier for an object or a function
// contains the storage-class specifier static, the identifier has internal
// linkage.
n.Linkage = Internal
case td.extern():
//TODO
//
// 4: For an identifier declared with the storage-class specifier extern in a
// scope in which a prior declaration of that identifier is visible, 23) if the
// prior declaration specifies internal or external linkage, the linkage of the
// identifier at the later declaration is the same as the linkage specified at
// the prior declaration. If no prior declaration is visible, or if the prior
// declaration specifies no linkage, then the identifier has external linkage.
n.Linkage = External
case
!n.IsParameter && typ.Kind() == Function && !hasStorageSpecifiers,
tld && !hasStorageSpecifiers:
// 5: If the declaration of an identifier for a function has no storage-class
// specifier, its linkage is determined exactly as if it were declared with the
// storage-class specifier extern.
n.Linkage = External
}
// 6.2.4 Storage durations of objects
switch {
case n.Linkage == External, n.Linkage == Internal, td.static():
// 2: An object whose identifier is declared with external or internal linkage,
// or with the storage-class specifier static has static storage duration. Its
// lifetime is the entire execution of the program and its stored value is
// initialized only once, prior to
// program startup.
n.StorageClass = Static
case n.Linkage == None && !td.static():
// 4: An object whose identifier is declared with no linkage and without the
// storage-class specifier static has automatic storage duration.
n.StorageClass = Automatic
}
switch {
case n.typ.Kind() == Invalid:
ctx.errNode(n, "declarator has incomplete type")
}
if n.IsTypedefName {
if k, ok := complexTypedefs[n.Name()]; ok {
abi := ctx.cfg.ABI
t := n.typ.Alias()
t.setKind(k)
abi.types[k] = t
abi.Types[k] = ABIType{Size: t.Size(), Align: t.Align(), FieldAlign: t.FieldAlign()}
}
}
switch expr, ok := n.AttributeSpecifierList.Has(idVectorSize, idVectorSize2); {
case ok:
n.vectorize(ctx, expr)
default:
switch x := td.(type) {
case *DeclarationSpecifiers:
for ; x != nil; x = x.DeclarationSpecifiers {
if expr, ok := x.AttributeSpecifier.Has(idVectorSize, idVectorSize2); ok {
n.vectorize(ctx, expr)
break
}
}
}
}
return n.typ
}
func (n *Declarator) vectorize(ctx *context, expr *ExpressionList) {
dst := &n.typ
elem := n.typ
switch n.typ.Kind() {
case Function:
dst = &n.typ.(*functionType).result
elem = n.typ.Result()
}
sz := expr.vectorSize(ctx)
if sz == 0 {
sz = elem.Size()
}
if elem.Size() == 0 {
ctx.errNode(expr, "vector element has zero size")
return
}
if sz%elem.Size() != 0 {
ctx.errNode(expr, "vector size must be a multiple of the base size")
}
b := n.typ.base()
b.size = sz
b.kind = byte(Vector)
*dst = &vectorType{
typeBase: b,
elem: elem,
length: sz / elem.Size(),
}
}
func (n *ExpressionList) vectorSize(ctx *context) (r uintptr) {
if n.ExpressionList != nil {
ctx.errNode(n, "expected single expression")
return 0
}
switch x := n.AssignmentExpression.Operand.Value().(type) {
case Int64Value:
if x <= 0 {
ctx.errNode(n, "expected integer greater than zero")
return 0
}
r = uintptr(x)
case Uint64Value:
r = uintptr(x)
case nil:
ctx.errNode(n, "expected constant expression")
r = 0
default:
panic(todo("%T", x))
}
if bits.OnesCount64(uint64(r)) != 1 {
ctx.errNode(n, "expected a power of two")
r = 0
}
return r
}
func (n *DirectDeclarator) check(ctx *context, typ Type) Type {
if n == nil {
return noType
}
switch n.Case {
case DirectDeclaratorIdent: // IDENTIFIER Asm
n.Asm.check(ctx)
return typ
case DirectDeclaratorDecl: // '(' AttributeSpecifierList Declarator ')'
n.AttributeSpecifierList.check(ctx, typ.baseP())
return n.Declarator.check(ctx, noTypeDescriptor, typ, false)
case DirectDeclaratorArr: // DirectDeclarator '[' TypeQualifiers AssignmentExpression ']'
return n.DirectDeclarator.check(ctx, checkArray(ctx, &n.Token, typ, n.AssignmentExpression, true, false))
case DirectDeclaratorStaticArr: // DirectDeclarator '[' "static" TypeQualifiers AssignmentExpression ']'
return n.DirectDeclarator.check(ctx, checkArray(ctx, &n.Token, typ, n.AssignmentExpression, false, false))
case DirectDeclaratorArrStatic: // DirectDeclarator '[' TypeQualifiers "static" AssignmentExpression ']'
return n.DirectDeclarator.check(ctx, checkArray(ctx, &n.Token, typ, n.AssignmentExpression, false, false))
case DirectDeclaratorStar: // DirectDeclarator '[' TypeQualifiers '*' ']'
return n.DirectDeclarator.check(ctx, checkArray(ctx, &n.Token, typ, nil, true, true))
case DirectDeclaratorFuncParam: // DirectDeclarator '(' ParameterTypeList ')'
ft := &functionType{typeBase: typeBase{kind: byte(Function)}, result: typ}
if typ != nil && typ.Inline() {
ft.typeBase.flags = fInline
}
n.ParameterTypeList.check(ctx, ft)
return n.DirectDeclarator.check(ctx, ft)
case DirectDeclaratorFuncIdent: // DirectDeclarator '(' IdentifierList ')'
ft := &functionType{typeBase: typeBase{kind: byte(Function)}, result: typ, paramList: n.IdentifierList.check(ctx)}
if typ != nil && typ.Inline() {
ft.typeBase.flags = fInline
}
if n.idListNoDeclList {
n.checkIdentList(ctx, ft)
}
return n.DirectDeclarator.check(ctx, ft)
}
panic(internalErrorf("%v: %v", n.Position(), n.Case))
}
func (n *DirectDeclarator) checkIdentList(ctx *context, ft *functionType) {
s := n.paramScope
for _, nm := range ft.paramList {
d := s[nm][0].(*Declarator)
d.check(ctx, noTypeDescriptor, ctx.cfg.ABI.Type(Int), false)
ft.params = append(ft.params, &Parameter{d, d.Type()})
}
}
func checkArray(ctx *context, n Node, typ Type, expr *AssignmentExpression, exprIsOptional, noExpr bool) Type { //TODO pass and use typeQualifiers
if typ == nil {
ctx.errNode(n, "array of invalid or incomplete type")
return noType
}
b := typ.base()
b.align = byte(typ.Align())
b.fieldAlign = byte(typ.FieldAlign())
b.kind = byte(Array)
switch {
case expr != nil && noExpr:
panic(todo(""))
case expr != nil:
op := expr.check(ctx, false)
if op.Type().Kind() == Invalid {
return noType
}
if !op.Type().IsIntegerType() {
//TODO report err
return noType
}
var length uintptr
var vla bool
var vlaExpr *AssignmentExpression
switch x := op.Value().(type) {
case nil:
vla = true
vlaExpr = expr
case Int64Value:
length = uintptr(x)
case Uint64Value:
length = uintptr(x)
}
switch {
case vla:
b.size = ctx.cfg.ABI.Types[Ptr].Size
default:
if typ.IsIncomplete() {
//TODO report error
return noType
}
b.size = length * typ.Size()
}
return &arrayType{typeBase: b, decay: ctx.cfg.ABI.Ptr(n, typ), elem: typ, length: length, vla: vla, expr: vlaExpr}
case noExpr:
// nop
case !exprIsOptional:
panic(todo(""))
}
b.flags |= fIncomplete
return &arrayType{typeBase: b, decay: ctx.cfg.ABI.Ptr(n, typ), elem: typ}
}
func (n *IdentifierList) check(ctx *context) (r []StringID) {
for ; n != nil; n = n.IdentifierList {
tok := n.Token2.Value
if tok == 0 {
tok = n.Token.Value
}
r = append(r, tok)
}
return r
}
func (n *Asm) check(ctx *context) {
if n == nil {
return
}
n.AsmQualifierList.check(ctx)
n.AsmArgList.check(ctx)
}
func (n *AsmArgList) check(ctx *context) {
for ; n != nil; n = n.AsmArgList {
n.AsmExpressionList.check(ctx)
}
}
func (n *AsmExpressionList) check(ctx *context) {
if ctx.cfg.DoNotTypecheckAsm {
return
}
for ; n != nil; n = n.AsmExpressionList {
n.AsmIndex.check(ctx)
n.AssignmentExpression.check(ctx, true)
}
}
func (n *AsmIndex) check(ctx *context) {
if n == nil {
return
}
n.Expression.check(ctx, true)
}
func (n *AsmQualifierList) check(ctx *context) {
for ; n != nil; n = n.AsmQualifierList {
n.AsmQualifier.check(ctx)
}
}
func (n *AsmQualifier) check(ctx *context) {
if n == nil {
return
}
switch n.Case {
case AsmQualifierVolatile: // "volatile"
//TODO
case AsmQualifierInline: // "inline"
//TODO
case AsmQualifierGoto: // "goto"
//TODO
default:
panic(todo(""))
}
}
func (n *AttributeSpecifierList) check(ctx *context, t *typeBase) (a []*AttributeSpecifier) {
for ; n != nil; n = n.AttributeSpecifierList {
a = append(a, n.AttributeSpecifier.check(ctx, t))
}
return a
}
func (n *AttributeSpecifier) check(ctx *context, t *typeBase) *AttributeSpecifier {
if n == nil {
return nil
}
n.AttributeValueList.check(ctx, t)
return n
}
func (n *AttributeValueList) check(ctx *context, t *typeBase) {
for ; n != nil; n = n.AttributeValueList {
n.AttributeValue.check(ctx, t)
}
}
func (n *AttributeValue) check(ctx *context, t *typeBase) {
if n == nil {
return
}
switch n.Case {
case AttributeValueIdent: // IDENTIFIER
if n.Token.Value == idPacked && t != nil {
t.flags |= fPacked
}
case AttributeValueExpr: // IDENTIFIER '(' ExpressionList ')'
v := ctx.cfg.ignoreErrors
ctx.cfg.ignoreErrors = true
defer func() { ctx.cfg.ignoreErrors = v }()
n.ExpressionList.check(ctx, false)
if n.Token.Value == idAligned && n.ExpressionList != nil && t != nil {
switch x := n.ExpressionList.AssignmentExpression.Operand.Value().(type) {
case Int64Value:
t.setAligned(int(x))
switch t.Kind() {
case Struct, Union:
ctx.structs[StructInfo{Size: t.Size(), Align: t.Align()}] = struct{}{}
}
}
}
default:
panic(todo(""))
}
}
func (n *ExpressionList) check(ctx *context, isAsmArg bool) {
for ; n != nil; n = n.ExpressionList {
n.AssignmentExpression.check(ctx, isAsmArg)
}
}
func (n *DeclarationSpecifiers) check(ctx *context, inUnion bool) (r Type, inline, noret bool) {
n0 := n
typ := &typeBase{}
for ; n != nil; n = n.DeclarationSpecifiers {
switch n.Case {
case DeclarationSpecifiersStorage: // StorageClassSpecifier DeclarationSpecifiers
n.StorageClassSpecifier.check(ctx, n)
case DeclarationSpecifiersTypeSpec: // TypeSpecifier DeclarationSpecifiers
n.TypeSpecifier.check(ctx, typ, inUnion)
case DeclarationSpecifiersTypeQual: // TypeQualifier DeclarationSpecifiers
n.TypeQualifier.check(ctx, typ)
case DeclarationSpecifiersFunc: // FunctionSpecifier DeclarationSpecifiers
if n.FunctionSpecifier == nil {
break
}
switch n.FunctionSpecifier.Case {
case FunctionSpecifierInline: // "inline"
inline = true
case FunctionSpecifierNoreturn: // "_Noreturn"
noret = true
default:
panic(todo(""))
}
case DeclarationSpecifiersAlignSpec: // AlignmentSpecifier DeclarationSpecifiers
n.AlignmentSpecifier.check(ctx)
case DeclarationSpecifiersAttribute: // AttributeSpecifier DeclarationSpecifiers
n.AttributeSpecifier.check(ctx, typ)
default:
panic(todo(""))
}
}
r = typ.check(ctx, n0, true)
return r, inline, noret
}
func (n *AlignmentSpecifier) check(ctx *context) {
if n == nil {
return
}
switch n.Case {
case AlignmentSpecifierAlignasType: // "_Alignas" '(' TypeName ')'
n.TypeName.check(ctx, false, false, nil)
//TODO actually set the alignment
case AlignmentSpecifierAlignasExpr: // "_Alignas" '(' ConstantExpression ')'
n.ConstantExpression.check(ctx, ctx.mode|mIntConstExpr, false)
//TODO actually set the alignment
default:
panic(todo(""))
}
}
func (n *StorageClassSpecifier) check(ctx *context, ds *DeclarationSpecifiers) {
if n == nil {
return
}
switch n.Case {
case StorageClassSpecifierTypedef: // "typedef"
ds.class |= fTypedef
case StorageClassSpecifierExtern: // "extern"
ds.class |= fExtern
case StorageClassSpecifierStatic: // "static"
ds.class |= fStatic
case StorageClassSpecifierAuto: // "auto"
ds.class |= fAuto
case StorageClassSpecifierRegister: // "register"
ds.class |= fRegister
case StorageClassSpecifierThreadLocal: // "_Thread_local"
ds.class |= fThreadLocal
default:
panic(todo(""))
}
c := bits.OnesCount(uint(ds.class & (fTypedef | fExtern | fStatic | fAuto | fRegister | fThreadLocal)))
if c == 1 {
return
}
// [2], 6.7.1, 2
if c == 2 && ds.class&fThreadLocal != 0 {
if ds.class&(fStatic|fExtern) != 0 {
return
}
}
ctx.errNode(n, "at most, one storage-class specifier may be given in the declaration specifiers in a declaration")
}
// DeclarationSpecifiers Declarator DeclarationList CompoundStatement
func (n *FunctionDefinition) checkDeclarator(ctx *context) {
if n == nil {
return
}
n.Declarator.fnDef = true
n.Declarator.funcDefinition = n
ctx.checkFn = n
typ, inline, noret := n.DeclarationSpecifiers.check(ctx, false)
typ = n.Declarator.check(ctx, n.DeclarationSpecifiers, typ, true)
typ.setFnSpecs(inline, noret)
ctx.checkFn = nil
n.DeclarationList.checkFn(ctx, typ, n.Declarator.ParamScope())
}
func (n *DeclarationList) checkFn(ctx *context, typ Type, s Scope) {
if n == nil {
return
}
n.check(ctx)
ft, ok := typ.(*functionType)
if !ok {
return
}
if ft.params != nil {
//TODO report error
return
}
if len(ft.paramList) == 0 {
//TODO report error
return
}
m := make(map[StringID]int, len(ft.paramList))
for i, v := range ft.paramList {
if _, ok := m[v]; ok {
ctx.errNode(n, "duplicate parameter: %s", v)
continue
}
m[v] = i
}
params := make([]*Parameter, len(m))
i := 0
for ; n != nil; n = n.DeclarationList {
for n := n.Declaration.InitDeclaratorList; n != nil; n = n.InitDeclaratorList {
n := n.InitDeclarator
switch n.Case {
case InitDeclaratorDecl: // Declarator AttributeSpecifierList
nm := n.Declarator.Name()
n.Declarator.IsParameter = true
switch x, ok := m[nm]; {
case ok:
params[x] = &Parameter{d: n.Declarator, typ: n.Declarator.Type()}
i++
default:
//TODO report error
}
case InitDeclaratorInit: // Declarator AttributeSpecifierList '=' Initializer
//TODO report error
return
default:
panic(todo(""))
}
}
}
for i, v := range params {
if v != nil {
continue
}
nm := ft.paramList[i]
d := &Declarator{
DirectDeclarator: &DirectDeclarator{
Case: DirectDeclaratorIdent,
Token: Token{Rune: IDENTIFIER, Value: nm},
},
IsParameter: true,
Linkage: None,
StorageClass: Automatic,
typ: ctx.cfg.ABI.Type(Int),
}
s.declare(nm, d)
params[i] = &Parameter{d, d.typ}
}
ft.params = params
}
func (n *CompoundStatement) check(ctx *context) Operand {
n.Operand = n.BlockItemList.check(ctx)
return n.Operand
}
func (n *BlockItemList) check(ctx *context) (r Operand) {
r = noOperand
var last *BlockItem
for ; n != nil; n = n.BlockItemList {
last = n.BlockItem
r = n.BlockItem.check(ctx)
}
if last != nil {
last.Last = true
}
return r
}
func (n *BlockItem) check(ctx *context) Operand {
if n == nil {
return noOperand
}
switch n.Case {
case BlockItemDecl: // Declaration
n.Declaration.check(ctx, false)
case BlockItemStmt: // Statement
return n.Statement.check(ctx)
case BlockItemLabel: // LabelDeclaration
n.LabelDeclaration.check(ctx)
case BlockItemFuncDef: // DeclarationSpecifiers Declarator CompoundStatement
ctxClosure := ctx.closure
ctx.closure = nil
ctxCheckFn := ctx.checkFn
fn := &FunctionDefinition{
DeclarationSpecifiers: n.DeclarationSpecifiers,
Declarator: n.Declarator,
CompoundStatement: n.CompoundStatement,
}
n.fn = fn
ctx.checkFn = fn
n.CompoundStatement.scope.declare(idClosure, n)
fn.checkDeclarator(ctx)
ctxCapture := ctx.capture
ctx.capture = true
fn.checkBody(ctx)
n.closure = ctx.closure
ctx.capture = ctxCapture
delete(n.CompoundStatement.scope, idClosure)
ctx.checkFn = ctxCheckFn
ctx.closure = ctxClosure
case BlockItemPragma: // PragmaSTDC
n.PragmaSTDC.check(ctx)
default:
panic(todo(""))
}
return noOperand
}
func (n *LabelDeclaration) check(ctx *context) {
if n == nil {
return
}
n.IdentifierList.check(ctx)
}
func (n *Statement) check(ctx *context) Operand {
if n == nil {
return noOperand
}
n.Operand = noOperand
switch n.Case {
case StatementLabeled: // LabeledStatement
n.LabeledStatement.check(ctx)
case StatementCompound: // CompoundStatement
n.Operand = n.CompoundStatement.check(ctx)
case StatementExpr: // ExpressionStatement
n.Operand = n.ExpressionStatement.check(ctx)
case StatementSelection: // SelectionStatement
n.SelectionStatement.check(ctx)
case StatementIteration: // IterationStatement
n.IterationStatement.check(ctx)
case StatementJump: // JumpStatement
n.JumpStatement.check(ctx)
case StatementAsm: // AsmStatement
n.AsmStatement.check(ctx)
default:
panic(todo(""))
}
return n.Operand
}
func (n *JumpStatement) check(ctx *context) {
if n == nil {
return
}
switch n.Case {
case JumpStatementGoto: // "goto" IDENTIFIER ';'
n.context = ctx.breakCtx
if ctx.checkFn.Gotos == nil {
ctx.checkFn.Gotos = map[StringID]*JumpStatement{}
}
ctx.checkFn.Gotos[n.Token2.Value] = n
case JumpStatementGotoExpr: // "goto" '*' Expression ';'
n.Expression.check(ctx, false)
//TODO
case JumpStatementContinue: // "continue" ';'
n.context = ctx.breakCtx
if ctx.continues <= 0 {
panic(n.Position().String())
}
//TODO
case JumpStatementBreak: // "break" ';'
n.context = ctx.breakCtx
if ctx.breaks <= 0 {
panic(n.Position().String())
}
//TODO
case JumpStatementReturn: // "return" Expression ';'
n.context = ctx.breakCtx
op := n.Expression.check(ctx, false)
if op.Type().IsComplexType() {
ctx.checkFn.ReturnComplexExpr = append(ctx.checkFn.ReturnComplexExpr, n.Expression)
}
default:
panic(todo(""))
}
}
func (n *IterationStatement) check(ctx *context) {
if n == nil {
return
}
sv := ctx.breakCtx
ctx.breakCtx = n
defer func() { ctx.breakCtx = sv }()
switch n.Case {
case IterationStatementWhile: // "while" '(' Expression ')' Statement
n.Expression.check(ctx, false)
ctx.breaks++
ctx.continues++
n.Statement.check(ctx)
ctx.breaks--
ctx.continues--
case IterationStatementDo: // "do" Statement "while" '(' Expression ')' ';'
ctx.breaks++
ctx.continues++
n.Statement.check(ctx)
ctx.breaks--
ctx.continues--
n.Expression.check(ctx, false)
case IterationStatementFor: // "for" '(' Expression ';' Expression ';' Expression ')' Statement
n.Expression.check(ctx, false)
n.Expression2.check(ctx, false)
n.Expression3.check(ctx, false)
ctx.breaks++
ctx.continues++
n.Statement.check(ctx)
ctx.breaks--
ctx.continues--
case IterationStatementForDecl: // "for" '(' Declaration Expression ';' Expression ')' Statement
n.Declaration.check(ctx, false)
n.Expression.check(ctx, false)
n.Expression2.check(ctx, false)
ctx.breaks++
ctx.continues++
n.Statement.check(ctx)
ctx.breaks--
ctx.continues--
default:
panic(todo(""))
}
}
func (n *SelectionStatement) check(ctx *context) {
if n == nil {
return
}
switch n.Case {
case SelectionStatementIf: // "if" '(' Expression ')' Statement
n.Expression.check(ctx, false)
n.Statement.check(ctx)
case SelectionStatementIfElse: // "if" '(' Expression ')' Statement "else" Statement
n.Expression.check(ctx, false)
n.Statement.check(ctx)
n.Statement2.check(ctx)
if !n.Expression.Operand.Type().IsScalarType() {
//TODO report err
break
}
case SelectionStatementSwitch: // "switch" '(' Expression ')' Statement
if n == nil {
return
}
sv := ctx.breakCtx
ctx.breakCtx = n
defer func() { ctx.breakCtx = sv }()
op := n.Expression.check(ctx, false)
n.promote = op.integerPromotion(ctx, n).Type()
cp := ctx.casePromote
ctx.casePromote = n.promote
cs := ctx.cases
ctx.cases = nil
ctx.switches++
ctx.breaks++
n.Statement.check(ctx)
ctx.breaks--
ctx.switches--
n.cases = ctx.cases
ctx.cases = cs
ctx.casePromote = cp
default:
panic(todo(""))
}
}
func (n *ExpressionStatement) check(ctx *context) Operand {
if n == nil {
return noOperand
}
n.AttributeSpecifierList.check(ctx, nil)
return n.Expression.check(ctx, false)
}
func (n *LabeledStatement) check(ctx *context) {
if n == nil {
return
}
switch n.Case {
case LabeledStatementLabel: // IDENTIFIER ':' AttributeSpecifierList Statement
if ctx.checkFn.Labels == nil {
ctx.checkFn.Labels = map[StringID]*LabeledStatement{}
}
if _, ok := ctx.checkFn.Labels[n.Token.Value]; ok {
//TODO report redeclared
}
ctx.checkFn.Labels[n.Token.Value] = n
n.AttributeSpecifierList.check(ctx, nil)
n.Statement.check(ctx)
case LabeledStatementCaseLabel: // "case" ConstantExpression ':' Statement
if ctx.switches <= 0 {
//TODO report error
break
}
switch op := n.ConstantExpression.check(ctx, ctx.mode|mIntConstExpr, false); op.Value().(type) {
case Int64Value, Uint64Value:
if t := ctx.casePromote; t.Kind() != Invalid {
n.ConstantExpression.Operand = op.convertTo(ctx, n, t)
break
}
//TODO report error
default:
//TODO report error
}
ctx.cases = append(ctx.cases, n)
n.Statement.check(ctx)
case LabeledStatementRange: // "case" ConstantExpression "..." ConstantExpression ':' Statement
if ctx.switches <= 0 {
//TODO report error
break
}
switch n.ConstantExpression.check(ctx, ctx.mode|mIntConstExpr, false).Value().(type) {
case Int64Value, Uint64Value:
// ok
default:
//TODO report error
}
switch n.ConstantExpression2.check(ctx, ctx.mode|mIntConstExpr, false).Value().(type) {
case Int64Value, Uint64Value:
// ok
default:
//TODO report error
}
ctx.cases = append(ctx.cases, n)
n.Statement.check(ctx)
case LabeledStatementDefault: // "default" ':' Statement
if ctx.switches <= 0 {
//TODO report error
break
}
ctx.cases = append(ctx.cases, n)
n.Statement.check(ctx)
default:
panic(todo(""))
}
}
func (n *DeclarationList) check(ctx *context) {
for ; n != nil; n = n.DeclarationList {
n.Declaration.check(ctx, false)
}
}
func setAddressTaken(n Node, d *Declarator, s string) {
d.AddressTaken = true
// fmt.Printf("%v: %s, type %v (%v, %v), declared at %v, AddressTaken = true: %v\n",
// n.Position(), d.Name(), d.Type(), d.Type().Kind(), d.Type().Size(), d.Position(), s,
// ) //TODO-
}
// Dump returns a debug form of n.
func (n *Initializer) Dump() string {
var b strings.Builder
f := strutil.IndentFormatter(&b, "\t")
n.dump(f)
return b.String()
}
func pos(n Node) (r token.Position) {
if n == nil {
return r
}
r = token.Position(n.Position())
if r.IsValid() {
r.Filename = filepath.Base(r.Filename)
}
return r
}
func (n *Initializer) dump(f strutil.Formatter) {
list := n.List()
if len(list) != 0 {
for i, v := range list {
f.Format("Initializer.List() #%d/%d: %v: off %v type %v", i, len(list), pos(v), v.Offset, v.Type())
if fld := v.FirstDesignatorField(); fld != nil {
f.Format(" [FirstDesignatorField %q]", fld.Name())
}
f.Format("\n")
}
}
if f0 := n.FirstDesignatorField(); f0 != nil {
f.Format("[FirstDesignatorField: %q, index %v, off %v, type %v] ", f0.Name(), f0.Index(), n.Offset, n.Type().Alias())
}
switch n.Case {
case InitializerExpr: // AssignmentExpression
if op := n.AssignmentExpression.Operand; op != nil {
n.isConst = op.IsConst()
n.isZero = op.IsZero()
}
var t Type
if n.AssignmentExpression != nil && n.AssignmentExpression.Operand != nil {
t = n.AssignmentExpression.Operand.Type()
}
f.Format("%v: %T@%[2]p, .Case %v, off %v, type %v\n", pos(n), n, n.Case, n.Offset, t.Alias())
case InitializerInitList: // '{' InitializerList ',' '}'
n.InitializerList.dump(f)
default:
panic(todo("%v:", n.Position()))
}
}
// Dump returns a debug form of n.
func (n *InitializerList) Dump() string {
var b strings.Builder
f := strutil.IndentFormatter(&b, "\t")
n.dump(f)
return b.String()
}
func (n *InitializerList) dump(f strutil.Formatter) {
if n == nil {
f.Format("<nil>")
return
}
f.Format("%v: %T@%[2]p, len(.List()) %v {%i\n", pos(n), n, len(n.List()))
list := n.List()
for ; n != nil; n = n.InitializerList {
n.Designation.dump(f)
n.Initializer.dump(f)
}
for i, v := range list {
f.Format("InitializerList.List() #%d/%d:", i, len(list))
v.dump(f)
}
f.Format("%u}\n")
}
func (n *Designation) dump(f strutil.Formatter) {
if n == nil {
return
}
cnt := 0
designatorField2 := false
for n := n.DesignatorList; n != nil; n = n.DesignatorList {
n.Designator.dump(f)
if n.Designator.Case == DesignatorField2 {
designatorField2 = true
}
cnt++
}
if cnt > 1 || !designatorField2 {
f.Format(" = ")
}
}
func (n *Designator) dump(f strutil.Formatter) {
switch n.Case {
case DesignatorIndex: // '[' ConstantExpression ']'
f.Format("[%v]", n.ConstantExpression.Operand.Value())
case DesignatorField: // '.' IDENTIFIER
f.Format(".%s", n.Token2.Value)
case DesignatorField2: // IDENTIFIER ':'
f.Format("%s:", n.Token.Value)
default:
panic(todo(""))
}
}