5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2025-01-15 01:56:29 +00:00
matterbridge/vendor/github.com/Benau/go_rlottie/vector_vdebug.cpp

759 lines
22 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2020 Samsung Electronics Co., Ltd. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "vector_vdebug.h"
#ifdef LOTTIE_LOGGING_SUPPORT
#include <atomic>
#include <chrono>
#include <cstring>
#include <ctime>
#include <fstream>
#include <memory>
#include <queue>
#include <sstream>
#include <thread>
#include <tuple>
namespace {
/* Returns microseconds since epoch */
uint64_t timestamp_now()
{
return std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::high_resolution_clock::now().time_since_epoch())
.count();
}
/* I want [2016-10-13 00:01:23.528514] */
void format_timestamp(std::ostream& os, uint64_t timestamp)
{
// The next 3 lines do not work on MSVC!
// auto duration = std::chrono::microseconds(timestamp);
// std::chrono::high_resolution_clock::time_point time_point(duration);
// std::time_t time_t =
// std::chrono::high_resolution_clock::to_time_t(time_point);
std::time_t time_t = timestamp / 1000000;
auto gmtime = std::gmtime(&time_t);
char buffer[32];
strftime(buffer, 32, "%Y-%m-%d %T.", gmtime);
char microseconds[7];
snprintf(microseconds, 7, "%06llu",
(long long unsigned int)timestamp % 1000000);
os << '[' << buffer << microseconds << ']';
}
std::thread::id this_thread_id()
{
static thread_local const std::thread::id id = std::this_thread::get_id();
return id;
}
template <typename T, typename Tuple>
struct TupleIndex;
template <typename T, typename... Types>
struct TupleIndex<T, std::tuple<T, Types...> > {
static constexpr const std::size_t value = 0;
};
template <typename T, typename U, typename... Types>
struct TupleIndex<T, std::tuple<U, Types...> > {
static constexpr const std::size_t value =
1 + TupleIndex<T, std::tuple<Types...> >::value;
};
} // anonymous namespace
typedef std::tuple<char, uint32_t, uint64_t, int32_t, int64_t, double,
VDebug::string_literal_t, char*>
SupportedTypes;
char const* to_string(LogLevel loglevel)
{
switch (loglevel) {
case LogLevel::OFF:
return "OFF";
case LogLevel::INFO:
return "INFO";
case LogLevel::WARN:
return "WARN";
case LogLevel::CRIT:
return "CRIT";
}
return "XXXX";
}
template <typename Arg>
void VDebug::encode(Arg arg)
{
*reinterpret_cast<Arg*>(buffer()) = arg;
m_bytes_used += sizeof(Arg);
}
template <typename Arg>
void VDebug::encode(Arg arg, uint8_t type_id)
{
resize_buffer_if_needed(sizeof(Arg) + sizeof(uint8_t));
encode<uint8_t>(type_id);
encode<Arg>(arg);
}
VDebug::VDebug(LogLevel level, char const* file, char const* function,
uint32_t line)
: m_bytes_used(0), m_buffer_size(sizeof(m_stack_buffer))
{
encode<uint64_t>(timestamp_now());
encode<std::thread::id>(this_thread_id());
encode<string_literal_t>(string_literal_t(file));
encode<string_literal_t>(string_literal_t(function));
encode<uint32_t>(line);
encode<LogLevel>(level);
if (level == LogLevel::INFO) {
m_logAll = false;
} else {
m_logAll = true;
}
}
VDebug::~VDebug() = default;
void VDebug::stringify(std::ostream& os)
{
char* b = !m_heap_buffer ? m_stack_buffer : m_heap_buffer.get();
char const* const end = b + m_bytes_used;
uint64_t timestamp = *reinterpret_cast<uint64_t*>(b);
b += sizeof(uint64_t);
std::thread::id threadid = *reinterpret_cast<std::thread::id*>(b);
b += sizeof(std::thread::id);
string_literal_t file = *reinterpret_cast<string_literal_t*>(b);
b += sizeof(string_literal_t);
string_literal_t function = *reinterpret_cast<string_literal_t*>(b);
b += sizeof(string_literal_t);
uint32_t line = *reinterpret_cast<uint32_t*>(b);
b += sizeof(uint32_t);
LogLevel loglevel = *reinterpret_cast<LogLevel*>(b);
b += sizeof(LogLevel);
if (m_logAll) {
format_timestamp(os, timestamp);
os << '[' << to_string(loglevel) << ']' << '[' << threadid << ']' << '['
<< file.m_s << ':' << function.m_s << ':' << line << "] ";
}
stringify(os, b, end);
os << std::endl;
if (loglevel >= LogLevel::CRIT) os.flush();
}
template <typename Arg>
char* decode(std::ostream& os, char* b, Arg* /*dummy*/)
{
Arg arg = *reinterpret_cast<Arg*>(b);
os << arg;
return b + sizeof(Arg);
}
template <>
char* decode(std::ostream& os, char* b, VDebug::string_literal_t* /*dummy*/)
{
VDebug::string_literal_t s =
*reinterpret_cast<VDebug::string_literal_t*>(b);
os << s.m_s;
return b + sizeof(VDebug::string_literal_t);
}
template <>
char* decode(std::ostream& os, char* b, char** /*dummy*/)
{
while (*b != '\0') {
os << *b;
++b;
}
return ++b;
}
void VDebug::stringify(std::ostream& os, char* start, char const* const end)
{
if (start == end) return;
int type_id = static_cast<int>(*start);
start++;
switch (type_id) {
case 0:
stringify(
os,
decode(os, start,
static_cast<std::tuple_element<0, SupportedTypes>::type*>(
nullptr)),
end);
return;
case 1:
stringify(
os,
decode(os, start,
static_cast<std::tuple_element<1, SupportedTypes>::type*>(
nullptr)),
end);
return;
case 2:
stringify(
os,
decode(os, start,
static_cast<std::tuple_element<2, SupportedTypes>::type*>(
nullptr)),
end);
return;
case 3:
stringify(
os,
decode(os, start,
static_cast<std::tuple_element<3, SupportedTypes>::type*>(
nullptr)),
end);
return;
case 4:
stringify(
os,
decode(os, start,
static_cast<std::tuple_element<4, SupportedTypes>::type*>(
nullptr)),
end);
return;
case 5:
stringify(
os,
decode(os, start,
static_cast<std::tuple_element<5, SupportedTypes>::type*>(
nullptr)),
end);
return;
case 6:
stringify(
os,
decode(os, start,
static_cast<std::tuple_element<6, SupportedTypes>::type*>(
nullptr)),
end);
return;
case 7:
stringify(
os,
decode(os, start,
static_cast<std::tuple_element<7, SupportedTypes>::type*>(
nullptr)),
end);
return;
}
}
char* VDebug::buffer()
{
return !m_heap_buffer ? &m_stack_buffer[m_bytes_used]
: &(m_heap_buffer.get())[m_bytes_used];
}
void VDebug::resize_buffer_if_needed(size_t additional_bytes)
{
size_t const required_size = m_bytes_used + additional_bytes;
if (required_size <= m_buffer_size) return;
if (!m_heap_buffer) {
m_buffer_size = std::max(static_cast<size_t>(512), required_size);
m_heap_buffer = std::make_unique<char[]>(m_buffer_size);
memcpy(m_heap_buffer.get(), m_stack_buffer, m_bytes_used);
return;
} else {
m_buffer_size =
std::max(static_cast<size_t>(2 * m_buffer_size), required_size);
std::unique_ptr<char[]> new_heap_buffer(new char[m_buffer_size]);
memcpy(new_heap_buffer.get(), m_heap_buffer.get(), m_bytes_used);
m_heap_buffer.swap(new_heap_buffer);
}
}
void VDebug::encode(char const* arg)
{
if (arg != nullptr) encode_c_string(arg, strlen(arg));
}
void VDebug::encode(char* arg)
{
if (arg != nullptr) encode_c_string(arg, strlen(arg));
}
void VDebug::encode_c_string(char const* arg, size_t length)
{
if (length == 0) return;
resize_buffer_if_needed(1 + length + 1);
char* b = buffer();
auto type_id = TupleIndex<char*, SupportedTypes>::value;
*reinterpret_cast<uint8_t*>(b++) = static_cast<uint8_t>(type_id);
memcpy(b, arg, length + 1);
m_bytes_used += 1 + length + 1;
}
void VDebug::encode(string_literal_t arg)
{
encode<string_literal_t>(
arg, TupleIndex<string_literal_t, SupportedTypes>::value);
}
VDebug& VDebug::operator<<(std::string const& arg)
{
encode_c_string(arg.c_str(), arg.length());
return *this;
}
VDebug& VDebug::operator<<(int32_t arg)
{
encode<int32_t>(arg, TupleIndex<int32_t, SupportedTypes>::value);
return *this;
}
VDebug& VDebug::operator<<(uint32_t arg)
{
encode<uint32_t>(arg, TupleIndex<uint32_t, SupportedTypes>::value);
return *this;
}
// VDebug& VDebug::operator<<(int64_t arg)
// {
// encode < int64_t >(arg, TupleIndex < int64_t, SupportedTypes >::value);
// return *this;
// }
// VDebug& VDebug::operator<<(uint64_t arg)
// {
// encode < uint64_t >(arg, TupleIndex < uint64_t, SupportedTypes >::value);
// return *this;
// }
VDebug& VDebug::operator<<(unsigned long arg)
{
encode<uint64_t>(arg, TupleIndex<uint64_t, SupportedTypes>::value);
return *this;
}
VDebug& VDebug::operator<<(long arg)
{
encode<int64_t>(arg, TupleIndex<int64_t, SupportedTypes>::value);
return *this;
}
VDebug& VDebug::operator<<(double arg)
{
encode<double>(arg, TupleIndex<double, SupportedTypes>::value);
return *this;
}
VDebug& VDebug::operator<<(char arg)
{
encode<char>(arg, TupleIndex<char, SupportedTypes>::value);
return *this;
}
struct BufferBase {
virtual ~BufferBase() = default;
virtual void push(VDebug&& logline) = 0;
virtual bool try_pop(VDebug& logline) = 0;
};
struct SpinLock {
SpinLock(std::atomic_flag& flag) : m_flag(flag)
{
while (m_flag.test_and_set(std::memory_order_acquire))
;
}
~SpinLock() { m_flag.clear(std::memory_order_release); }
private:
std::atomic_flag& m_flag;
};
/* Multi Producer Single Consumer Ring Buffer */
class RingBuffer : public BufferBase {
public:
struct alignas(64) Item {
Item()
: flag(), written(0), logline(LogLevel::INFO, nullptr, nullptr, 0)
{
}
std::atomic_flag flag;
char written;
char padding[256 - sizeof(std::atomic_flag) - sizeof(char) -
sizeof(VDebug)];
VDebug logline;
};
RingBuffer(size_t const size)
: m_size(size),
m_ring(static_cast<Item*>(std::malloc(size * sizeof(Item)))),
m_write_index(0),
m_read_index(0)
{
for (size_t i = 0; i < m_size; ++i) {
new (&m_ring[i]) Item();
}
static_assert(sizeof(Item) == 256, "Unexpected size != 256");
}
~RingBuffer() override
{
for (size_t i = 0; i < m_size; ++i) {
m_ring[i].~Item();
}
std::free(m_ring);
}
void push(VDebug&& logline) override
{
unsigned int write_index =
m_write_index.fetch_add(1, std::memory_order_relaxed) % m_size;
Item& item = m_ring[write_index];
SpinLock spinlock(item.flag);
item.logline = std::move(logline);
item.written = 1;
}
bool try_pop(VDebug& logline) override
{
Item& item = m_ring[m_read_index % m_size];
SpinLock spinlock(item.flag);
if (item.written == 1) {
logline = std::move(item.logline);
item.written = 0;
++m_read_index;
return true;
}
return false;
}
RingBuffer(RingBuffer const&) = delete;
RingBuffer& operator=(RingBuffer const&) = delete;
private:
size_t const m_size;
Item* m_ring;
std::atomic<unsigned int> m_write_index;
public:
char pad[64];
private:
unsigned int m_read_index;
};
class Buffer {
public:
struct Item {
Item(VDebug&& logline) : logline(std::move(logline)) {}
char padding[256 - sizeof(VDebug)];
VDebug logline;
};
static constexpr const size_t size =
32768; // 8MB. Helps reduce memory fragmentation
Buffer() : m_buffer(static_cast<Item*>(std::malloc(size * sizeof(Item))))
{
for (size_t i = 0; i <= size; ++i) {
m_write_state[i].store(0, std::memory_order_relaxed);
}
static_assert(sizeof(Item) == 256, "Unexpected size != 256");
}
~Buffer()
{
unsigned int write_count = m_write_state[size].load();
for (size_t i = 0; i < write_count; ++i) {
m_buffer[i].~Item();
}
std::free(m_buffer);
}
// Returns true if we need to switch to next buffer
bool push(VDebug&& logline, unsigned int const write_index)
{
new (&m_buffer[write_index]) Item(std::move(logline));
m_write_state[write_index].store(1, std::memory_order_release);
return m_write_state[size].fetch_add(1, std::memory_order_acquire) +
1 ==
size;
}
bool try_pop(VDebug& logline, unsigned int const read_index)
{
if (m_write_state[read_index].load(std::memory_order_acquire)) {
Item& item = m_buffer[read_index];
logline = std::move(item.logline);
return true;
}
return false;
}
Buffer(Buffer const&) = delete;
Buffer& operator=(Buffer const&) = delete;
private:
Item* m_buffer;
std::atomic<unsigned int> m_write_state[size + 1];
};
class QueueBuffer : public BufferBase {
public:
QueueBuffer(QueueBuffer const&) = delete;
QueueBuffer& operator=(QueueBuffer const&) = delete;
QueueBuffer()
: m_current_read_buffer{nullptr},
m_write_index(0),
m_flag(),
m_read_index(0)
{
setup_next_write_buffer();
}
void push(VDebug&& logline) override
{
unsigned int write_index =
m_write_index.fetch_add(1, std::memory_order_relaxed);
if (write_index < Buffer::size) {
if (m_current_write_buffer.load(std::memory_order_acquire)
->push(std::move(logline), write_index)) {
setup_next_write_buffer();
}
} else {
while (m_write_index.load(std::memory_order_acquire) >=
Buffer::size)
;
push(std::move(logline));
}
}
bool try_pop(VDebug& logline) override
{
if (m_current_read_buffer == nullptr)
m_current_read_buffer = get_next_read_buffer();
Buffer* read_buffer = m_current_read_buffer;
if (read_buffer == nullptr) return false;
if (read_buffer->try_pop(logline, m_read_index)) {
m_read_index++;
if (m_read_index == Buffer::size) {
m_read_index = 0;
m_current_read_buffer = nullptr;
SpinLock spinlock(m_flag);
m_buffers.pop();
}
return true;
}
return false;
}
private:
void setup_next_write_buffer()
{
std::unique_ptr<Buffer> next_write_buffer(new Buffer());
m_current_write_buffer.store(next_write_buffer.get(),
std::memory_order_release);
SpinLock spinlock(m_flag);
m_buffers.push(std::move(next_write_buffer));
m_write_index.store(0, std::memory_order_relaxed);
}
Buffer* get_next_read_buffer()
{
SpinLock spinlock(m_flag);
return m_buffers.empty() ? nullptr : m_buffers.front().get();
}
private:
std::queue<std::unique_ptr<Buffer> > m_buffers;
std::atomic<Buffer*> m_current_write_buffer;
Buffer* m_current_read_buffer;
std::atomic<unsigned int> m_write_index;
std::atomic_flag m_flag;
unsigned int m_read_index;
};
class FileWriter {
public:
FileWriter(std::string const& log_directory,
std::string const& log_file_name, uint32_t log_file_roll_size_mb)
: m_log_file_roll_size_bytes(log_file_roll_size_mb * 1024 * 1024),
m_name(log_directory + log_file_name)
{
roll_file();
}
void write(VDebug& logline)
{
auto pos = m_os->tellp();
logline.stringify(*m_os);
m_bytes_written += m_os->tellp() - pos;
if (m_bytes_written > m_log_file_roll_size_bytes) {
roll_file();
}
}
private:
void roll_file()
{
if (m_os) {
m_os->flush();
m_os->close();
}
m_bytes_written = 0;
m_os = std::make_unique<std::ofstream>();
// TODO Optimize this part. Does it even matter ?
std::string log_file_name = m_name;
log_file_name.append(".");
log_file_name.append(std::to_string(++m_file_number));
log_file_name.append(".txt");
m_os->open(log_file_name, std::ofstream::out | std::ofstream::trunc);
}
private:
uint32_t m_file_number = 0;
std::streamoff m_bytes_written = 0;
uint32_t const m_log_file_roll_size_bytes;
std::string const m_name;
std::unique_ptr<std::ofstream> m_os;
};
class NanoLogger {
public:
NanoLogger(NonGuaranteedLogger ngl, std::string const& log_directory,
std::string const& log_file_name, uint32_t log_file_roll_size_mb)
: m_state(State::INIT),
m_buffer_base(
new RingBuffer(std::max(1u, ngl.ring_buffer_size_mb) * 1024 * 4)),
m_file_writer(log_directory, log_file_name,
std::max(1u, log_file_roll_size_mb)),
m_thread(&NanoLogger::pop, this)
{
m_state.store(State::READY, std::memory_order_release);
}
NanoLogger(GuaranteedLogger /*gl*/, std::string const& log_directory,
std::string const& log_file_name, uint32_t log_file_roll_size_mb)
: m_state(State::INIT),
m_buffer_base(new QueueBuffer()),
m_file_writer(log_directory, log_file_name,
std::max(1u, log_file_roll_size_mb)),
m_thread(&NanoLogger::pop, this)
{
m_state.store(State::READY, std::memory_order_release);
}
~NanoLogger()
{
m_state.store(State::SHUTDOWN);
m_thread.join();
}
void add(VDebug&& logline) { m_buffer_base->push(std::move(logline)); }
void pop()
{
// Wait for constructor to complete and pull all stores done there to
// this thread / core.
while (m_state.load(std::memory_order_acquire) == State::INIT)
std::this_thread::sleep_for(std::chrono::microseconds(50));
VDebug logline(LogLevel::INFO, nullptr, nullptr, 0);
while (m_state.load() == State::READY) {
if (m_buffer_base->try_pop(logline))
m_file_writer.write(logline);
else
std::this_thread::sleep_for(std::chrono::microseconds(50));
}
// Pop and log all remaining entries
while (m_buffer_base->try_pop(logline)) {
m_file_writer.write(logline);
}
}
private:
enum class State { INIT, READY, SHUTDOWN };
std::atomic<State> m_state;
std::unique_ptr<BufferBase> m_buffer_base;
FileWriter m_file_writer;
std::thread m_thread;
};
std::unique_ptr<NanoLogger> nanologger;
std::atomic<NanoLogger*> atomic_nanologger;
bool VDebugServer::operator==(VDebug& logline)
{
atomic_nanologger.load(std::memory_order_acquire)->add(std::move(logline));
return true;
}
void initialize(NonGuaranteedLogger ngl, std::string const& log_directory,
std::string const& log_file_name,
uint32_t log_file_roll_size_mb)
{
nanologger = std::make_unique<NanoLogger>(ngl, log_directory, log_file_name,
log_file_roll_size_mb);
atomic_nanologger.store(nanologger.get(), std::memory_order_seq_cst);
}
void initialize(GuaranteedLogger gl, std::string const& log_directory,
std::string const& log_file_name,
uint32_t log_file_roll_size_mb)
{
nanologger = std::make_unique<NanoLogger>(gl, log_directory, log_file_name,
log_file_roll_size_mb);
atomic_nanologger.store(nanologger.get(), std::memory_order_seq_cst);
}
std::atomic<unsigned int> loglevel = {0};
void set_log_level(LogLevel level)
{
loglevel.store(static_cast<unsigned int>(level), std::memory_order_release);
}
bool is_logged(LogLevel level)
{
return static_cast<unsigned int>(level) >=
loglevel.load(std::memory_order_relaxed);
}
#endif // LOTTIE_LOGGING_SUPPORT