mirror of
https://github.com/cwinfo/matterbridge.git
synced 2025-07-05 21:54:06 +00:00
Update dependencies (#975)
This commit is contained in:
79
vendor/golang.org/x/crypto/acme/jws.go
generated
vendored
79
vendor/golang.org/x/crypto/acme/jws.go
generated
vendored
@ -11,31 +11,60 @@ import (
|
||||
"crypto/rsa"
|
||||
"crypto/sha256"
|
||||
_ "crypto/sha512" // need for EC keys
|
||||
"encoding/asn1"
|
||||
"encoding/base64"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// keyID is the account identity provided by a CA during registration.
|
||||
type keyID string
|
||||
|
||||
// noKeyID indicates that jwsEncodeJSON should compute and use JWK instead of a KID.
|
||||
// See jwsEncodeJSON for details.
|
||||
const noKeyID = keyID("")
|
||||
|
||||
// noPayload indicates jwsEncodeJSON will encode zero-length octet string
|
||||
// in a JWS request. This is called POST-as-GET in RFC 8555 and is used to make
|
||||
// authenticated GET requests via POSTing with an empty payload.
|
||||
// See https://tools.ietf.org/html/rfc8555#section-6.3 for more details.
|
||||
const noPayload = ""
|
||||
|
||||
// jwsEncodeJSON signs claimset using provided key and a nonce.
|
||||
// The result is serialized in JSON format.
|
||||
// The result is serialized in JSON format containing either kid or jwk
|
||||
// fields based on the provided keyID value.
|
||||
//
|
||||
// If kid is non-empty, its quoted value is inserted in the protected head
|
||||
// as "kid" field value. Otherwise, JWK is computed using jwkEncode and inserted
|
||||
// as "jwk" field value. The "jwk" and "kid" fields are mutually exclusive.
|
||||
//
|
||||
// See https://tools.ietf.org/html/rfc7515#section-7.
|
||||
func jwsEncodeJSON(claimset interface{}, key crypto.Signer, nonce string) ([]byte, error) {
|
||||
jwk, err := jwkEncode(key.Public())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
func jwsEncodeJSON(claimset interface{}, key crypto.Signer, kid keyID, nonce, url string) ([]byte, error) {
|
||||
alg, sha := jwsHasher(key.Public())
|
||||
if alg == "" || !sha.Available() {
|
||||
return nil, ErrUnsupportedKey
|
||||
}
|
||||
phead := fmt.Sprintf(`{"alg":%q,"jwk":%s,"nonce":%q}`, alg, jwk, nonce)
|
||||
phead = base64.RawURLEncoding.EncodeToString([]byte(phead))
|
||||
cs, err := json.Marshal(claimset)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
var phead string
|
||||
switch kid {
|
||||
case noKeyID:
|
||||
jwk, err := jwkEncode(key.Public())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
phead = fmt.Sprintf(`{"alg":%q,"jwk":%s,"nonce":%q,"url":%q}`, alg, jwk, nonce, url)
|
||||
default:
|
||||
phead = fmt.Sprintf(`{"alg":%q,"kid":%q,"nonce":%q,"url":%q}`, alg, kid, nonce, url)
|
||||
}
|
||||
phead = base64.RawURLEncoding.EncodeToString([]byte(phead))
|
||||
var payload string
|
||||
if claimset != noPayload {
|
||||
cs, err := json.Marshal(claimset)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
payload = base64.RawURLEncoding.EncodeToString(cs)
|
||||
}
|
||||
payload := base64.RawURLEncoding.EncodeToString(cs)
|
||||
hash := sha.New()
|
||||
hash.Write([]byte(phead + "." + payload))
|
||||
sig, err := jwsSign(key, sha, hash.Sum(nil))
|
||||
@ -98,21 +127,23 @@ func jwkEncode(pub crypto.PublicKey) (string, error) {
|
||||
|
||||
// jwsSign signs the digest using the given key.
|
||||
// The hash is unused for ECDSA keys.
|
||||
//
|
||||
// Note: non-stdlib crypto.Signer implementations are expected to return
|
||||
// the signature in the format as specified in RFC7518.
|
||||
// See https://tools.ietf.org/html/rfc7518 for more details.
|
||||
func jwsSign(key crypto.Signer, hash crypto.Hash, digest []byte) ([]byte, error) {
|
||||
if key, ok := key.(*ecdsa.PrivateKey); ok {
|
||||
// The key.Sign method of ecdsa returns ASN1-encoded signature.
|
||||
// So, we use the package Sign function instead
|
||||
// to get R and S values directly and format the result accordingly.
|
||||
r, s, err := ecdsa.Sign(rand.Reader, key, digest)
|
||||
switch pub := key.Public().(type) {
|
||||
case *rsa.PublicKey:
|
||||
return key.Sign(rand.Reader, digest, hash)
|
||||
case *ecdsa.PublicKey:
|
||||
sigASN1, err := key.Sign(rand.Reader, digest, hash)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
rb, sb := r.Bytes(), s.Bytes()
|
||||
size := key.Params().BitSize / 8
|
||||
|
||||
var rs struct{ R, S *big.Int }
|
||||
if _, err := asn1.Unmarshal(sigASN1, &rs); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
rb, sb := rs.R.Bytes(), rs.S.Bytes()
|
||||
size := pub.Params().BitSize / 8
|
||||
if size%8 > 0 {
|
||||
size++
|
||||
}
|
||||
@ -121,7 +152,7 @@ func jwsSign(key crypto.Signer, hash crypto.Hash, digest []byte) ([]byte, error)
|
||||
copy(sig[size*2-len(sb):], sb)
|
||||
return sig, nil
|
||||
}
|
||||
return key.Sign(rand.Reader, digest, hash)
|
||||
return nil, ErrUnsupportedKey
|
||||
}
|
||||
|
||||
// jwsHasher indicates suitable JWS algorithm name and a hash function
|
||||
|
Reference in New Issue
Block a user