4
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2025-06-26 08:39:24 +00:00

Add dependencies/vendor (whatsapp)

This commit is contained in:
Wim
2022-01-31 00:27:37 +01:00
parent e7b193788a
commit e3cafeaf92
1074 changed files with 3091569 additions and 26075 deletions

27
vendor/filippo.io/edwards25519/LICENSE generated vendored Normal file
View File

@ -0,0 +1,27 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

14
vendor/filippo.io/edwards25519/README.md generated vendored Normal file
View File

@ -0,0 +1,14 @@
# filippo.io/edwards25519
```
import "filippo.io/edwards25519"
```
This library implements the edwards25519 elliptic curve, exposing the necessary APIs to build a wide array of higher-level primitives.
Read the docs at [pkg.go.dev/filippo.io/edwards25519](https://pkg.go.dev/filippo.io/edwards25519).
The code is originally derived from Adam Langley's internal implementation in the Go standard library, and includes George Tankersley's [performance improvements](https://golang.org/cl/71950). It was then further developed by Henry de Valence for use in ristretto255.
Most users don't need this package, and should instead use `crypto/ed25519` for signatures, `golang.org/x/crypto/curve25519` for Diffie-Hellman, or `github.com/gtank/ristretto255` for prime order group logic. However, for anyone currently using a fork of `crypto/ed25519/internal/edwards25519` or `github.com/agl/edwards25519`, this package should be a safer, faster, and more powerful alternative.
Since this package is meant to curb proliferation of edwards25519 implementations in the Go ecosystem, it welcomes requests for new APIs or reviewable performance improvements.

20
vendor/filippo.io/edwards25519/doc.go generated vendored Normal file
View File

@ -0,0 +1,20 @@
// Copyright (c) 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package edwards25519 implements group logic for the twisted Edwards curve
//
// -x^2 + y^2 = 1 + -(121665/121666)*x^2*y^2
//
// This is better known as the Edwards curve equivalent to Curve25519, and is
// the curve used by the Ed25519 signature scheme.
//
// Most users don't need this package, and should instead use crypto/ed25519 for
// signatures, golang.org/x/crypto/curve25519 for Diffie-Hellman, or
// github.com/gtank/ristretto255 for prime order group logic.
//
// However, developers who do need to interact with low-level edwards25519
// operations can use this package, which is an extended version of
// crypto/ed25519/internal/edwards25519 from the standard library repackaged as
// an importable module.
package edwards25519

428
vendor/filippo.io/edwards25519/edwards25519.go generated vendored Normal file
View File

@ -0,0 +1,428 @@
// Copyright (c) 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package edwards25519
import (
"errors"
"filippo.io/edwards25519/field"
)
// Point types.
type projP1xP1 struct {
X, Y, Z, T field.Element
}
type projP2 struct {
X, Y, Z field.Element
}
// Point represents a point on the edwards25519 curve.
//
// This type works similarly to math/big.Int, and all arguments and receivers
// are allowed to alias.
//
// The zero value is NOT valid, and it may be used only as a receiver.
type Point struct {
// The point is internally represented in extended coordinates (X, Y, Z, T)
// where x = X/Z, y = Y/Z, and xy = T/Z per https://eprint.iacr.org/2008/522.
x, y, z, t field.Element
// Make the type not comparable (i.e. used with == or as a map key), as
// equivalent points can be represented by different Go values.
_ incomparable
}
type incomparable [0]func()
func checkInitialized(points ...*Point) {
for _, p := range points {
if p.x == (field.Element{}) && p.y == (field.Element{}) {
panic("edwards25519: use of uninitialized Point")
}
}
}
type projCached struct {
YplusX, YminusX, Z, T2d field.Element
}
type affineCached struct {
YplusX, YminusX, T2d field.Element
}
// Constructors.
func (v *projP2) Zero() *projP2 {
v.X.Zero()
v.Y.One()
v.Z.One()
return v
}
// identity is the point at infinity.
var identity, _ = new(Point).SetBytes([]byte{
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})
// NewIdentityPoint returns a new Point set to the identity.
func NewIdentityPoint() *Point {
return new(Point).Set(identity)
}
// generator is the canonical curve basepoint. See TestGenerator for the
// correspondence of this encoding with the values in RFC 8032.
var generator, _ = new(Point).SetBytes([]byte{
0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66})
// NewGeneratorPoint returns a new Point set to the canonical generator.
func NewGeneratorPoint() *Point {
return new(Point).Set(generator)
}
func (v *projCached) Zero() *projCached {
v.YplusX.One()
v.YminusX.One()
v.Z.One()
v.T2d.Zero()
return v
}
func (v *affineCached) Zero() *affineCached {
v.YplusX.One()
v.YminusX.One()
v.T2d.Zero()
return v
}
// Assignments.
// Set sets v = u, and returns v.
func (v *Point) Set(u *Point) *Point {
*v = *u
return v
}
// Encoding.
// Bytes returns the canonical 32-byte encoding of v, according to RFC 8032,
// Section 5.1.2.
func (v *Point) Bytes() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var buf [32]byte
return v.bytes(&buf)
}
func (v *Point) bytes(buf *[32]byte) []byte {
checkInitialized(v)
var zInv, x, y field.Element
zInv.Invert(&v.z) // zInv = 1 / Z
x.Multiply(&v.x, &zInv) // x = X / Z
y.Multiply(&v.y, &zInv) // y = Y / Z
out := copyFieldElement(buf, &y)
out[31] |= byte(x.IsNegative() << 7)
return out
}
var feOne = new(field.Element).One()
// SetBytes sets v = x, where x is a 32-byte encoding of v. If x does not
// represent a valid point on the curve, SetBytes returns nil and an error and
// the receiver is unchanged. Otherwise, SetBytes returns v.
//
// Note that SetBytes accepts all non-canonical encodings of valid points.
// That is, it follows decoding rules that match most implementations in
// the ecosystem rather than RFC 8032.
func (v *Point) SetBytes(x []byte) (*Point, error) {
// Specifically, the non-canonical encodings that are accepted are
// 1) the ones where the field element is not reduced (see the
// (*field.Element).SetBytes docs) and
// 2) the ones where the x-coordinate is zero and the sign bit is set.
//
// This is consistent with crypto/ed25519/internal/edwards25519. Read more
// at https://hdevalence.ca/blog/2020-10-04-its-25519am, specifically the
// "Canonical A, R" section.
y, err := new(field.Element).SetBytes(x)
if err != nil {
return nil, errors.New("edwards25519: invalid point encoding length")
}
// -x² + y² = 1 + dx²y²
// x² + dx²y² = x²(dy² + 1) = y² - 1
// x² = (y² - 1) / (dy² + 1)
// u = y² - 1
y2 := new(field.Element).Square(y)
u := new(field.Element).Subtract(y2, feOne)
// v = dy² + 1
vv := new(field.Element).Multiply(y2, d)
vv = vv.Add(vv, feOne)
// x = +√(u/v)
xx, wasSquare := new(field.Element).SqrtRatio(u, vv)
if wasSquare == 0 {
return nil, errors.New("edwards25519: invalid point encoding")
}
// Select the negative square root if the sign bit is set.
xxNeg := new(field.Element).Negate(xx)
xx = xx.Select(xxNeg, xx, int(x[31]>>7))
v.x.Set(xx)
v.y.Set(y)
v.z.One()
v.t.Multiply(xx, y) // xy = T / Z
return v, nil
}
func copyFieldElement(buf *[32]byte, v *field.Element) []byte {
copy(buf[:], v.Bytes())
return buf[:]
}
// Conversions.
func (v *projP2) FromP1xP1(p *projP1xP1) *projP2 {
v.X.Multiply(&p.X, &p.T)
v.Y.Multiply(&p.Y, &p.Z)
v.Z.Multiply(&p.Z, &p.T)
return v
}
func (v *projP2) FromP3(p *Point) *projP2 {
v.X.Set(&p.x)
v.Y.Set(&p.y)
v.Z.Set(&p.z)
return v
}
func (v *Point) fromP1xP1(p *projP1xP1) *Point {
v.x.Multiply(&p.X, &p.T)
v.y.Multiply(&p.Y, &p.Z)
v.z.Multiply(&p.Z, &p.T)
v.t.Multiply(&p.X, &p.Y)
return v
}
func (v *Point) fromP2(p *projP2) *Point {
v.x.Multiply(&p.X, &p.Z)
v.y.Multiply(&p.Y, &p.Z)
v.z.Square(&p.Z)
v.t.Multiply(&p.X, &p.Y)
return v
}
// d is a constant in the curve equation.
var d, _ = new(field.Element).SetBytes([]byte{
0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52})
var d2 = new(field.Element).Add(d, d)
func (v *projCached) FromP3(p *Point) *projCached {
v.YplusX.Add(&p.y, &p.x)
v.YminusX.Subtract(&p.y, &p.x)
v.Z.Set(&p.z)
v.T2d.Multiply(&p.t, d2)
return v
}
func (v *affineCached) FromP3(p *Point) *affineCached {
v.YplusX.Add(&p.y, &p.x)
v.YminusX.Subtract(&p.y, &p.x)
v.T2d.Multiply(&p.t, d2)
var invZ field.Element
invZ.Invert(&p.z)
v.YplusX.Multiply(&v.YplusX, &invZ)
v.YminusX.Multiply(&v.YminusX, &invZ)
v.T2d.Multiply(&v.T2d, &invZ)
return v
}
// (Re)addition and subtraction.
// Add sets v = p + q, and returns v.
func (v *Point) Add(p, q *Point) *Point {
checkInitialized(p, q)
qCached := new(projCached).FromP3(q)
result := new(projP1xP1).Add(p, qCached)
return v.fromP1xP1(result)
}
// Subtract sets v = p - q, and returns v.
func (v *Point) Subtract(p, q *Point) *Point {
checkInitialized(p, q)
qCached := new(projCached).FromP3(q)
result := new(projP1xP1).Sub(p, qCached)
return v.fromP1xP1(result)
}
func (v *projP1xP1) Add(p *Point, q *projCached) *projP1xP1 {
var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element
YplusX.Add(&p.y, &p.x)
YminusX.Subtract(&p.y, &p.x)
PP.Multiply(&YplusX, &q.YplusX)
MM.Multiply(&YminusX, &q.YminusX)
TT2d.Multiply(&p.t, &q.T2d)
ZZ2.Multiply(&p.z, &q.Z)
ZZ2.Add(&ZZ2, &ZZ2)
v.X.Subtract(&PP, &MM)
v.Y.Add(&PP, &MM)
v.Z.Add(&ZZ2, &TT2d)
v.T.Subtract(&ZZ2, &TT2d)
return v
}
func (v *projP1xP1) Sub(p *Point, q *projCached) *projP1xP1 {
var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element
YplusX.Add(&p.y, &p.x)
YminusX.Subtract(&p.y, &p.x)
PP.Multiply(&YplusX, &q.YminusX) // flipped sign
MM.Multiply(&YminusX, &q.YplusX) // flipped sign
TT2d.Multiply(&p.t, &q.T2d)
ZZ2.Multiply(&p.z, &q.Z)
ZZ2.Add(&ZZ2, &ZZ2)
v.X.Subtract(&PP, &MM)
v.Y.Add(&PP, &MM)
v.Z.Subtract(&ZZ2, &TT2d) // flipped sign
v.T.Add(&ZZ2, &TT2d) // flipped sign
return v
}
func (v *projP1xP1) AddAffine(p *Point, q *affineCached) *projP1xP1 {
var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element
YplusX.Add(&p.y, &p.x)
YminusX.Subtract(&p.y, &p.x)
PP.Multiply(&YplusX, &q.YplusX)
MM.Multiply(&YminusX, &q.YminusX)
TT2d.Multiply(&p.t, &q.T2d)
Z2.Add(&p.z, &p.z)
v.X.Subtract(&PP, &MM)
v.Y.Add(&PP, &MM)
v.Z.Add(&Z2, &TT2d)
v.T.Subtract(&Z2, &TT2d)
return v
}
func (v *projP1xP1) SubAffine(p *Point, q *affineCached) *projP1xP1 {
var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element
YplusX.Add(&p.y, &p.x)
YminusX.Subtract(&p.y, &p.x)
PP.Multiply(&YplusX, &q.YminusX) // flipped sign
MM.Multiply(&YminusX, &q.YplusX) // flipped sign
TT2d.Multiply(&p.t, &q.T2d)
Z2.Add(&p.z, &p.z)
v.X.Subtract(&PP, &MM)
v.Y.Add(&PP, &MM)
v.Z.Subtract(&Z2, &TT2d) // flipped sign
v.T.Add(&Z2, &TT2d) // flipped sign
return v
}
// Doubling.
func (v *projP1xP1) Double(p *projP2) *projP1xP1 {
var XX, YY, ZZ2, XplusYsq field.Element
XX.Square(&p.X)
YY.Square(&p.Y)
ZZ2.Square(&p.Z)
ZZ2.Add(&ZZ2, &ZZ2)
XplusYsq.Add(&p.X, &p.Y)
XplusYsq.Square(&XplusYsq)
v.Y.Add(&YY, &XX)
v.Z.Subtract(&YY, &XX)
v.X.Subtract(&XplusYsq, &v.Y)
v.T.Subtract(&ZZ2, &v.Z)
return v
}
// Negation.
// Negate sets v = -p, and returns v.
func (v *Point) Negate(p *Point) *Point {
checkInitialized(p)
v.x.Negate(&p.x)
v.y.Set(&p.y)
v.z.Set(&p.z)
v.t.Negate(&p.t)
return v
}
// Equal returns 1 if v is equivalent to u, and 0 otherwise.
func (v *Point) Equal(u *Point) int {
checkInitialized(v, u)
var t1, t2, t3, t4 field.Element
t1.Multiply(&v.x, &u.z)
t2.Multiply(&u.x, &v.z)
t3.Multiply(&v.y, &u.z)
t4.Multiply(&u.y, &v.z)
return t1.Equal(&t2) & t3.Equal(&t4)
}
// Constant-time operations
// Select sets v to a if cond == 1 and to b if cond == 0.
func (v *projCached) Select(a, b *projCached, cond int) *projCached {
v.YplusX.Select(&a.YplusX, &b.YplusX, cond)
v.YminusX.Select(&a.YminusX, &b.YminusX, cond)
v.Z.Select(&a.Z, &b.Z, cond)
v.T2d.Select(&a.T2d, &b.T2d, cond)
return v
}
// Select sets v to a if cond == 1 and to b if cond == 0.
func (v *affineCached) Select(a, b *affineCached, cond int) *affineCached {
v.YplusX.Select(&a.YplusX, &b.YplusX, cond)
v.YminusX.Select(&a.YminusX, &b.YminusX, cond)
v.T2d.Select(&a.T2d, &b.T2d, cond)
return v
}
// CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0.
func (v *projCached) CondNeg(cond int) *projCached {
v.YplusX.Swap(&v.YminusX, cond)
v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond)
return v
}
// CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0.
func (v *affineCached) CondNeg(cond int) *affineCached {
v.YplusX.Swap(&v.YminusX, cond)
v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond)
return v
}

343
vendor/filippo.io/edwards25519/extra.go generated vendored Normal file
View File

@ -0,0 +1,343 @@
// Copyright (c) 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package edwards25519
// This file contains additional functionality that is not included in the
// upstream crypto/ed25519/internal/edwards25519 package.
import (
"errors"
"filippo.io/edwards25519/field"
)
// ExtendedCoordinates returns v in extended coordinates (X:Y:Z:T) where
// x = X/Z, y = Y/Z, and xy = T/Z as in https://eprint.iacr.org/2008/522.
func (v *Point) ExtendedCoordinates() (X, Y, Z, T *field.Element) {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap. Don't change the style without making
// sure it doesn't increase the inliner cost.
var e [4]field.Element
X, Y, Z, T = v.extendedCoordinates(&e)
return
}
func (v *Point) extendedCoordinates(e *[4]field.Element) (X, Y, Z, T *field.Element) {
checkInitialized(v)
X = e[0].Set(&v.x)
Y = e[1].Set(&v.y)
Z = e[2].Set(&v.z)
T = e[3].Set(&v.t)
return
}
// SetExtendedCoordinates sets v = (X:Y:Z:T) in extended coordinates where
// x = X/Z, y = Y/Z, and xy = T/Z as in https://eprint.iacr.org/2008/522.
//
// If the coordinates are invalid or don't represent a valid point on the curve,
// SetExtendedCoordinates returns nil and an error and the receiver is
// unchanged. Otherwise, SetExtendedCoordinates returns v.
func (v *Point) SetExtendedCoordinates(X, Y, Z, T *field.Element) (*Point, error) {
if !isOnCurve(X, Y, Z, T) {
return nil, errors.New("edwards25519: invalid point coordinates")
}
v.x.Set(X)
v.y.Set(Y)
v.z.Set(Z)
v.t.Set(T)
return v, nil
}
func isOnCurve(X, Y, Z, T *field.Element) bool {
var lhs, rhs field.Element
XX := new(field.Element).Square(X)
YY := new(field.Element).Square(Y)
ZZ := new(field.Element).Square(Z)
TT := new(field.Element).Square(T)
// -x² + y² = 1 + dx²y²
// -(X/Z)² + (Y/Z)² = 1 + d(T/Z)²
// -X² + Y² = Z² + dT²
lhs.Subtract(YY, XX)
rhs.Multiply(d, TT).Add(&rhs, ZZ)
if lhs.Equal(&rhs) != 1 {
return false
}
// xy = T/Z
// XY/Z² = T/Z
// XY = TZ
lhs.Multiply(X, Y)
rhs.Multiply(T, Z)
return lhs.Equal(&rhs) == 1
}
// BytesMontgomery converts v to a point on the birationally-equivalent
// Curve25519 Montgomery curve, and returns its canonical 32 bytes encoding
// according to RFC 7748.
//
// Note that BytesMontgomery only encodes the u-coordinate, so v and -v encode
// to the same value. If v is the identity point, BytesMontgomery returns 32
// zero bytes, analogously to the X25519 function.
func (v *Point) BytesMontgomery() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var buf [32]byte
return v.bytesMontgomery(&buf)
}
func (v *Point) bytesMontgomery(buf *[32]byte) []byte {
checkInitialized(v)
// RFC 7748, Section 4.1 provides the bilinear map to calculate the
// Montgomery u-coordinate
//
// u = (1 + y) / (1 - y)
//
// where y = Y / Z.
var y, recip, u field.Element
y.Multiply(&v.y, y.Invert(&v.z)) // y = Y / Z
recip.Invert(recip.Subtract(feOne, &y)) // r = 1/(1 - y)
u.Multiply(u.Add(feOne, &y), &recip) // u = (1 + y)*r
return copyFieldElement(buf, &u)
}
// MultByCofactor sets v = 8 * p, and returns v.
func (v *Point) MultByCofactor(p *Point) *Point {
checkInitialized(p)
result := projP1xP1{}
pp := (&projP2{}).FromP3(p)
result.Double(pp)
pp.FromP1xP1(&result)
result.Double(pp)
pp.FromP1xP1(&result)
result.Double(pp)
return v.fromP1xP1(&result)
}
// Given k > 0, set s = s**(2*i).
func (s *Scalar) pow2k(k int) {
for i := 0; i < k; i++ {
s.Multiply(s, s)
}
}
// Invert sets s to the inverse of a nonzero scalar v, and returns s.
//
// If t is zero, Invert returns zero.
func (s *Scalar) Invert(t *Scalar) *Scalar {
// Uses a hardcoded sliding window of width 4.
var table [8]Scalar
var tt Scalar
tt.Multiply(t, t)
table[0] = *t
for i := 0; i < 7; i++ {
table[i+1].Multiply(&table[i], &tt)
}
// Now table = [t**1, t**3, t**7, t**11, t**13, t**15]
// so t**k = t[k/2] for odd k
// To compute the sliding window digits, use the following Sage script:
// sage: import itertools
// sage: def sliding_window(w,k):
// ....: digits = []
// ....: while k > 0:
// ....: if k % 2 == 1:
// ....: kmod = k % (2**w)
// ....: digits.append(kmod)
// ....: k = k - kmod
// ....: else:
// ....: digits.append(0)
// ....: k = k // 2
// ....: return digits
// Now we can compute s roughly as follows:
// sage: s = 1
// sage: for coeff in reversed(sliding_window(4,l-2)):
// ....: s = s*s
// ....: if coeff > 0 :
// ....: s = s*t**coeff
// This works on one bit at a time, with many runs of zeros.
// The digits can be collapsed into [(count, coeff)] as follows:
// sage: [(len(list(group)),d) for d,group in itertools.groupby(sliding_window(4,l-2))]
// Entries of the form (k, 0) turn into pow2k(k)
// Entries of the form (1, coeff) turn into a squaring and then a table lookup.
// We can fold the squaring into the previous pow2k(k) as pow2k(k+1).
*s = table[1/2]
s.pow2k(127 + 1)
s.Multiply(s, &table[1/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[9/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[11/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[13/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[15/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[7/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[15/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[5/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[1/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[15/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[15/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[7/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[3/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[11/2])
s.pow2k(5 + 1)
s.Multiply(s, &table[11/2])
s.pow2k(9 + 1)
s.Multiply(s, &table[9/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[3/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[3/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[3/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[9/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[7/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[3/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[13/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[7/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[9/2])
s.pow2k(3 + 1)
s.Multiply(s, &table[15/2])
s.pow2k(4 + 1)
s.Multiply(s, &table[11/2])
return s
}
// MultiScalarMult sets v = sum(scalars[i] * points[i]), and returns v.
//
// Execution time depends only on the lengths of the two slices, which must match.
func (v *Point) MultiScalarMult(scalars []*Scalar, points []*Point) *Point {
if len(scalars) != len(points) {
panic("edwards25519: called MultiScalarMult with different size inputs")
}
checkInitialized(points...)
// Proceed as in the single-base case, but share doublings
// between each point in the multiscalar equation.
// Build lookup tables for each point
tables := make([]projLookupTable, len(points))
for i := range tables {
tables[i].FromP3(points[i])
}
// Compute signed radix-16 digits for each scalar
digits := make([][64]int8, len(scalars))
for i := range digits {
digits[i] = scalars[i].signedRadix16()
}
// Unwrap first loop iteration to save computing 16*identity
multiple := &projCached{}
tmp1 := &projP1xP1{}
tmp2 := &projP2{}
// Lookup-and-add the appropriate multiple of each input point
for j := range tables {
tables[j].SelectInto(multiple, digits[j][63])
tmp1.Add(v, multiple) // tmp1 = v + x_(j,63)*Q in P1xP1 coords
v.fromP1xP1(tmp1) // update v
}
tmp2.FromP3(v) // set up tmp2 = v in P2 coords for next iteration
for i := 62; i >= 0; i-- {
tmp1.Double(tmp2) // tmp1 = 2*(prev) in P1xP1 coords
tmp2.FromP1xP1(tmp1) // tmp2 = 2*(prev) in P2 coords
tmp1.Double(tmp2) // tmp1 = 4*(prev) in P1xP1 coords
tmp2.FromP1xP1(tmp1) // tmp2 = 4*(prev) in P2 coords
tmp1.Double(tmp2) // tmp1 = 8*(prev) in P1xP1 coords
tmp2.FromP1xP1(tmp1) // tmp2 = 8*(prev) in P2 coords
tmp1.Double(tmp2) // tmp1 = 16*(prev) in P1xP1 coords
v.fromP1xP1(tmp1) // v = 16*(prev) in P3 coords
// Lookup-and-add the appropriate multiple of each input point
for j := range tables {
tables[j].SelectInto(multiple, digits[j][i])
tmp1.Add(v, multiple) // tmp1 = v + x_(j,i)*Q in P1xP1 coords
v.fromP1xP1(tmp1) // update v
}
tmp2.FromP3(v) // set up tmp2 = v in P2 coords for next iteration
}
return v
}
// VarTimeMultiScalarMult sets v = sum(scalars[i] * points[i]), and returns v.
//
// Execution time depends on the inputs.
func (v *Point) VarTimeMultiScalarMult(scalars []*Scalar, points []*Point) *Point {
if len(scalars) != len(points) {
panic("edwards25519: called VarTimeMultiScalarMult with different size inputs")
}
checkInitialized(points...)
// Generalize double-base NAF computation to arbitrary sizes.
// Here all the points are dynamic, so we only use the smaller
// tables.
// Build lookup tables for each point
tables := make([]nafLookupTable5, len(points))
for i := range tables {
tables[i].FromP3(points[i])
}
// Compute a NAF for each scalar
nafs := make([][256]int8, len(scalars))
for i := range nafs {
nafs[i] = scalars[i].nonAdjacentForm(5)
}
multiple := &projCached{}
tmp1 := &projP1xP1{}
tmp2 := &projP2{}
tmp2.Zero()
// Move from high to low bits, doubling the accumulator
// at each iteration and checking whether there is a nonzero
// coefficient to look up a multiple of.
//
// Skip trying to find the first nonzero coefficent, because
// searching might be more work than a few extra doublings.
for i := 255; i >= 0; i-- {
tmp1.Double(tmp2)
for j := range nafs {
if nafs[j][i] > 0 {
v.fromP1xP1(tmp1)
tables[j].SelectInto(multiple, nafs[j][i])
tmp1.Add(v, multiple)
} else if nafs[j][i] < 0 {
v.fromP1xP1(tmp1)
tables[j].SelectInto(multiple, -nafs[j][i])
tmp1.Sub(v, multiple)
}
}
tmp2.FromP1xP1(tmp1)
}
v.fromP2(tmp2)
return v
}

419
vendor/filippo.io/edwards25519/field/fe.go generated vendored Normal file
View File

@ -0,0 +1,419 @@
// Copyright (c) 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package field implements fast arithmetic modulo 2^255-19.
package field
import (
"crypto/subtle"
"encoding/binary"
"errors"
"math/bits"
)
// Element represents an element of the field GF(2^255-19). Note that this
// is not a cryptographically secure group, and should only be used to interact
// with edwards25519.Point coordinates.
//
// This type works similarly to math/big.Int, and all arguments and receivers
// are allowed to alias.
//
// The zero value is a valid zero element.
type Element struct {
// An element t represents the integer
// t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204
//
// Between operations, all limbs are expected to be lower than 2^52.
l0 uint64
l1 uint64
l2 uint64
l3 uint64
l4 uint64
}
const maskLow51Bits uint64 = (1 << 51) - 1
var feZero = &Element{0, 0, 0, 0, 0}
// Zero sets v = 0, and returns v.
func (v *Element) Zero() *Element {
*v = *feZero
return v
}
var feOne = &Element{1, 0, 0, 0, 0}
// One sets v = 1, and returns v.
func (v *Element) One() *Element {
*v = *feOne
return v
}
// reduce reduces v modulo 2^255 - 19 and returns it.
func (v *Element) reduce() *Element {
v.carryPropagate()
// After the light reduction we now have a field element representation
// v < 2^255 + 2^13 * 19, but need v < 2^255 - 19.
// If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1,
// generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise.
c := (v.l0 + 19) >> 51
c = (v.l1 + c) >> 51
c = (v.l2 + c) >> 51
c = (v.l3 + c) >> 51
c = (v.l4 + c) >> 51
// If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's
// effectively applying the reduction identity to the carry.
v.l0 += 19 * c
v.l1 += v.l0 >> 51
v.l0 = v.l0 & maskLow51Bits
v.l2 += v.l1 >> 51
v.l1 = v.l1 & maskLow51Bits
v.l3 += v.l2 >> 51
v.l2 = v.l2 & maskLow51Bits
v.l4 += v.l3 >> 51
v.l3 = v.l3 & maskLow51Bits
// no additional carry
v.l4 = v.l4 & maskLow51Bits
return v
}
// Add sets v = a + b, and returns v.
func (v *Element) Add(a, b *Element) *Element {
v.l0 = a.l0 + b.l0
v.l1 = a.l1 + b.l1
v.l2 = a.l2 + b.l2
v.l3 = a.l3 + b.l3
v.l4 = a.l4 + b.l4
// Using the generic implementation here is actually faster than the
// assembly. Probably because the body of this function is so simple that
// the compiler can figure out better optimizations by inlining the carry
// propagation.
return v.carryPropagateGeneric()
}
// Subtract sets v = a - b, and returns v.
func (v *Element) Subtract(a, b *Element) *Element {
// We first add 2 * p, to guarantee the subtraction won't underflow, and
// then subtract b (which can be up to 2^255 + 2^13 * 19).
v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0
v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1
v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2
v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3
v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4
return v.carryPropagate()
}
// Negate sets v = -a, and returns v.
func (v *Element) Negate(a *Element) *Element {
return v.Subtract(feZero, a)
}
// Invert sets v = 1/z mod p, and returns v.
//
// If z == 0, Invert returns v = 0.
func (v *Element) Invert(z *Element) *Element {
// Inversion is implemented as exponentiation with exponent p 2. It uses the
// same sequence of 255 squarings and 11 multiplications as [Curve25519].
var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element
z2.Square(z) // 2
t.Square(&z2) // 4
t.Square(&t) // 8
z9.Multiply(&t, z) // 9
z11.Multiply(&z9, &z2) // 11
t.Square(&z11) // 22
z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0
t.Square(&z2_5_0) // 2^6 - 2^1
for i := 0; i < 4; i++ {
t.Square(&t) // 2^10 - 2^5
}
z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0
t.Square(&z2_10_0) // 2^11 - 2^1
for i := 0; i < 9; i++ {
t.Square(&t) // 2^20 - 2^10
}
z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0
t.Square(&z2_20_0) // 2^21 - 2^1
for i := 0; i < 19; i++ {
t.Square(&t) // 2^40 - 2^20
}
t.Multiply(&t, &z2_20_0) // 2^40 - 2^0
t.Square(&t) // 2^41 - 2^1
for i := 0; i < 9; i++ {
t.Square(&t) // 2^50 - 2^10
}
z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0
t.Square(&z2_50_0) // 2^51 - 2^1
for i := 0; i < 49; i++ {
t.Square(&t) // 2^100 - 2^50
}
z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0
t.Square(&z2_100_0) // 2^101 - 2^1
for i := 0; i < 99; i++ {
t.Square(&t) // 2^200 - 2^100
}
t.Multiply(&t, &z2_100_0) // 2^200 - 2^0
t.Square(&t) // 2^201 - 2^1
for i := 0; i < 49; i++ {
t.Square(&t) // 2^250 - 2^50
}
t.Multiply(&t, &z2_50_0) // 2^250 - 2^0
t.Square(&t) // 2^251 - 2^1
t.Square(&t) // 2^252 - 2^2
t.Square(&t) // 2^253 - 2^3
t.Square(&t) // 2^254 - 2^4
t.Square(&t) // 2^255 - 2^5
return v.Multiply(&t, &z11) // 2^255 - 21
}
// Set sets v = a, and returns v.
func (v *Element) Set(a *Element) *Element {
*v = *a
return v
}
// SetBytes sets v to x, where x is a 32-byte little-endian encoding. If x is
// not of the right length, SetUniformBytes returns nil and an error, and the
// receiver is unchanged.
//
// Consistent with RFC 7748, the most significant bit (the high bit of the
// last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
// are accepted. Note that this is laxer than specified by RFC 8032.
func (v *Element) SetBytes(x []byte) (*Element, error) {
if len(x) != 32 {
return nil, errors.New("edwards25519: invalid field element input size")
}
// Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51).
v.l0 = binary.LittleEndian.Uint64(x[0:8])
v.l0 &= maskLow51Bits
// Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51).
v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3
v.l1 &= maskLow51Bits
// Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51).
v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6
v.l2 &= maskLow51Bits
// Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51).
v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1
v.l3 &= maskLow51Bits
// Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51).
// Note: not bytes 25:33, shift 4, to avoid overread.
v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12
v.l4 &= maskLow51Bits
return v, nil
}
// Bytes returns the canonical 32-byte little-endian encoding of v.
func (v *Element) Bytes() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [32]byte
return v.bytes(&out)
}
func (v *Element) bytes(out *[32]byte) []byte {
t := *v
t.reduce()
var buf [8]byte
for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} {
bitsOffset := i * 51
binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8))
for i, bb := range buf {
off := bitsOffset/8 + i
if off >= len(out) {
break
}
out[off] |= bb
}
}
return out[:]
}
// Equal returns 1 if v and u are equal, and 0 otherwise.
func (v *Element) Equal(u *Element) int {
sa, sv := u.Bytes(), v.Bytes()
return subtle.ConstantTimeCompare(sa, sv)
}
// mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise.
func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) }
// Select sets v to a if cond == 1, and to b if cond == 0.
func (v *Element) Select(a, b *Element, cond int) *Element {
m := mask64Bits(cond)
v.l0 = (m & a.l0) | (^m & b.l0)
v.l1 = (m & a.l1) | (^m & b.l1)
v.l2 = (m & a.l2) | (^m & b.l2)
v.l3 = (m & a.l3) | (^m & b.l3)
v.l4 = (m & a.l4) | (^m & b.l4)
return v
}
// Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v.
func (v *Element) Swap(u *Element, cond int) {
m := mask64Bits(cond)
t := m & (v.l0 ^ u.l0)
v.l0 ^= t
u.l0 ^= t
t = m & (v.l1 ^ u.l1)
v.l1 ^= t
u.l1 ^= t
t = m & (v.l2 ^ u.l2)
v.l2 ^= t
u.l2 ^= t
t = m & (v.l3 ^ u.l3)
v.l3 ^= t
u.l3 ^= t
t = m & (v.l4 ^ u.l4)
v.l4 ^= t
u.l4 ^= t
}
// IsNegative returns 1 if v is negative, and 0 otherwise.
func (v *Element) IsNegative() int {
return int(v.Bytes()[0] & 1)
}
// Absolute sets v to |u|, and returns v.
func (v *Element) Absolute(u *Element) *Element {
return v.Select(new(Element).Negate(u), u, u.IsNegative())
}
// Multiply sets v = x * y, and returns v.
func (v *Element) Multiply(x, y *Element) *Element {
feMul(v, x, y)
return v
}
// Square sets v = x * x, and returns v.
func (v *Element) Square(x *Element) *Element {
feSquare(v, x)
return v
}
// Mult32 sets v = x * y, and returns v.
func (v *Element) Mult32(x *Element, y uint32) *Element {
x0lo, x0hi := mul51(x.l0, y)
x1lo, x1hi := mul51(x.l1, y)
x2lo, x2hi := mul51(x.l2, y)
x3lo, x3hi := mul51(x.l3, y)
x4lo, x4hi := mul51(x.l4, y)
v.l0 = x0lo + 19*x4hi // carried over per the reduction identity
v.l1 = x1lo + x0hi
v.l2 = x2lo + x1hi
v.l3 = x3lo + x2hi
v.l4 = x4lo + x3hi
// The hi portions are going to be only 32 bits, plus any previous excess,
// so we can skip the carry propagation.
return v
}
// mul51 returns lo + hi * 2⁵¹ = a * b.
func mul51(a uint64, b uint32) (lo uint64, hi uint64) {
mh, ml := bits.Mul64(a, uint64(b))
lo = ml & maskLow51Bits
hi = (mh << 13) | (ml >> 51)
return
}
// Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3.
func (v *Element) Pow22523(x *Element) *Element {
var t0, t1, t2 Element
t0.Square(x) // x^2
t1.Square(&t0) // x^4
t1.Square(&t1) // x^8
t1.Multiply(x, &t1) // x^9
t0.Multiply(&t0, &t1) // x^11
t0.Square(&t0) // x^22
t0.Multiply(&t1, &t0) // x^31
t1.Square(&t0) // x^62
for i := 1; i < 5; i++ { // x^992
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // x^1023 -> 1023 = 2^10 - 1
t1.Square(&t0) // 2^11 - 2
for i := 1; i < 10; i++ { // 2^20 - 2^10
t1.Square(&t1)
}
t1.Multiply(&t1, &t0) // 2^20 - 1
t2.Square(&t1) // 2^21 - 2
for i := 1; i < 20; i++ { // 2^40 - 2^20
t2.Square(&t2)
}
t1.Multiply(&t2, &t1) // 2^40 - 1
t1.Square(&t1) // 2^41 - 2
for i := 1; i < 10; i++ { // 2^50 - 2^10
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // 2^50 - 1
t1.Square(&t0) // 2^51 - 2
for i := 1; i < 50; i++ { // 2^100 - 2^50
t1.Square(&t1)
}
t1.Multiply(&t1, &t0) // 2^100 - 1
t2.Square(&t1) // 2^101 - 2
for i := 1; i < 100; i++ { // 2^200 - 2^100
t2.Square(&t2)
}
t1.Multiply(&t2, &t1) // 2^200 - 1
t1.Square(&t1) // 2^201 - 2
for i := 1; i < 50; i++ { // 2^250 - 2^50
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // 2^250 - 1
t0.Square(&t0) // 2^251 - 2
t0.Square(&t0) // 2^252 - 4
return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3)
}
// sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion.
var sqrtM1 = &Element{1718705420411056, 234908883556509,
2233514472574048, 2117202627021982, 765476049583133}
// SqrtRatio sets r to the non-negative square root of the ratio of u and v.
//
// If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio
// sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00,
// and returns r and 0.
func (r *Element) SqrtRatio(u, v *Element) (rr *Element, wasSquare int) {
var a, b Element
// r = (u * v3) * (u * v7)^((p-5)/8)
v2 := a.Square(v)
uv3 := b.Multiply(u, b.Multiply(v2, v))
uv7 := a.Multiply(uv3, a.Square(v2))
r.Multiply(uv3, r.Pow22523(uv7))
check := a.Multiply(v, a.Square(r)) // check = v * r^2
uNeg := b.Negate(u)
correctSignSqrt := check.Equal(u)
flippedSignSqrt := check.Equal(uNeg)
flippedSignSqrtI := check.Equal(uNeg.Multiply(uNeg, sqrtM1))
rPrime := b.Multiply(r, sqrtM1) // r_prime = SQRT_M1 * r
// r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
r.Select(rPrime, r, flippedSignSqrt|flippedSignSqrtI)
r.Absolute(r) // Choose the nonnegative square root.
return r, correctSignSqrt | flippedSignSqrt
}

13
vendor/filippo.io/edwards25519/field/fe_amd64.go generated vendored Normal file
View File

@ -0,0 +1,13 @@
// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
// +build amd64,gc,!purego
package field
// feMul sets out = a * b. It works like feMulGeneric.
//go:noescape
func feMul(out *Element, a *Element, b *Element)
// feSquare sets out = a * a. It works like feSquareGeneric.
//go:noescape
func feSquare(out *Element, a *Element)

378
vendor/filippo.io/edwards25519/field/fe_amd64.s generated vendored Normal file
View File

@ -0,0 +1,378 @@
// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
// +build amd64,gc,!purego
#include "textflag.h"
// func feMul(out *Element, a *Element, b *Element)
TEXT ·feMul(SB), NOSPLIT, $0-24
MOVQ a+8(FP), CX
MOVQ b+16(FP), BX
// r0 = a0×b0
MOVQ (CX), AX
MULQ (BX)
MOVQ AX, DI
MOVQ DX, SI
// r0 += 19×a1×b4
MOVQ 8(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(BX)
ADDQ AX, DI
ADCQ DX, SI
// r0 += 19×a2×b3
MOVQ 16(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 24(BX)
ADDQ AX, DI
ADCQ DX, SI
// r0 += 19×a3×b2
MOVQ 24(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 16(BX)
ADDQ AX, DI
ADCQ DX, SI
// r0 += 19×a4×b1
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 8(BX)
ADDQ AX, DI
ADCQ DX, SI
// r1 = a0×b1
MOVQ (CX), AX
MULQ 8(BX)
MOVQ AX, R9
MOVQ DX, R8
// r1 += a1×b0
MOVQ 8(CX), AX
MULQ (BX)
ADDQ AX, R9
ADCQ DX, R8
// r1 += 19×a2×b4
MOVQ 16(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(BX)
ADDQ AX, R9
ADCQ DX, R8
// r1 += 19×a3×b3
MOVQ 24(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 24(BX)
ADDQ AX, R9
ADCQ DX, R8
// r1 += 19×a4×b2
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 16(BX)
ADDQ AX, R9
ADCQ DX, R8
// r2 = a0×b2
MOVQ (CX), AX
MULQ 16(BX)
MOVQ AX, R11
MOVQ DX, R10
// r2 += a1×b1
MOVQ 8(CX), AX
MULQ 8(BX)
ADDQ AX, R11
ADCQ DX, R10
// r2 += a2×b0
MOVQ 16(CX), AX
MULQ (BX)
ADDQ AX, R11
ADCQ DX, R10
// r2 += 19×a3×b4
MOVQ 24(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(BX)
ADDQ AX, R11
ADCQ DX, R10
// r2 += 19×a4×b3
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 24(BX)
ADDQ AX, R11
ADCQ DX, R10
// r3 = a0×b3
MOVQ (CX), AX
MULQ 24(BX)
MOVQ AX, R13
MOVQ DX, R12
// r3 += a1×b2
MOVQ 8(CX), AX
MULQ 16(BX)
ADDQ AX, R13
ADCQ DX, R12
// r3 += a2×b1
MOVQ 16(CX), AX
MULQ 8(BX)
ADDQ AX, R13
ADCQ DX, R12
// r3 += a3×b0
MOVQ 24(CX), AX
MULQ (BX)
ADDQ AX, R13
ADCQ DX, R12
// r3 += 19×a4×b4
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(BX)
ADDQ AX, R13
ADCQ DX, R12
// r4 = a0×b4
MOVQ (CX), AX
MULQ 32(BX)
MOVQ AX, R15
MOVQ DX, R14
// r4 += a1×b3
MOVQ 8(CX), AX
MULQ 24(BX)
ADDQ AX, R15
ADCQ DX, R14
// r4 += a2×b2
MOVQ 16(CX), AX
MULQ 16(BX)
ADDQ AX, R15
ADCQ DX, R14
// r4 += a3×b1
MOVQ 24(CX), AX
MULQ 8(BX)
ADDQ AX, R15
ADCQ DX, R14
// r4 += a4×b0
MOVQ 32(CX), AX
MULQ (BX)
ADDQ AX, R15
ADCQ DX, R14
// First reduction chain
MOVQ $0x0007ffffffffffff, AX
SHLQ $0x0d, DI, SI
SHLQ $0x0d, R9, R8
SHLQ $0x0d, R11, R10
SHLQ $0x0d, R13, R12
SHLQ $0x0d, R15, R14
ANDQ AX, DI
IMUL3Q $0x13, R14, R14
ADDQ R14, DI
ANDQ AX, R9
ADDQ SI, R9
ANDQ AX, R11
ADDQ R8, R11
ANDQ AX, R13
ADDQ R10, R13
ANDQ AX, R15
ADDQ R12, R15
// Second reduction chain (carryPropagate)
MOVQ DI, SI
SHRQ $0x33, SI
MOVQ R9, R8
SHRQ $0x33, R8
MOVQ R11, R10
SHRQ $0x33, R10
MOVQ R13, R12
SHRQ $0x33, R12
MOVQ R15, R14
SHRQ $0x33, R14
ANDQ AX, DI
IMUL3Q $0x13, R14, R14
ADDQ R14, DI
ANDQ AX, R9
ADDQ SI, R9
ANDQ AX, R11
ADDQ R8, R11
ANDQ AX, R13
ADDQ R10, R13
ANDQ AX, R15
ADDQ R12, R15
// Store output
MOVQ out+0(FP), AX
MOVQ DI, (AX)
MOVQ R9, 8(AX)
MOVQ R11, 16(AX)
MOVQ R13, 24(AX)
MOVQ R15, 32(AX)
RET
// func feSquare(out *Element, a *Element)
TEXT ·feSquare(SB), NOSPLIT, $0-16
MOVQ a+8(FP), CX
// r0 = l0×l0
MOVQ (CX), AX
MULQ (CX)
MOVQ AX, SI
MOVQ DX, BX
// r0 += 38×l1×l4
MOVQ 8(CX), AX
IMUL3Q $0x26, AX, AX
MULQ 32(CX)
ADDQ AX, SI
ADCQ DX, BX
// r0 += 38×l2×l3
MOVQ 16(CX), AX
IMUL3Q $0x26, AX, AX
MULQ 24(CX)
ADDQ AX, SI
ADCQ DX, BX
// r1 = 2×l0×l1
MOVQ (CX), AX
SHLQ $0x01, AX
MULQ 8(CX)
MOVQ AX, R8
MOVQ DX, DI
// r1 += 38×l2×l4
MOVQ 16(CX), AX
IMUL3Q $0x26, AX, AX
MULQ 32(CX)
ADDQ AX, R8
ADCQ DX, DI
// r1 += 19×l3×l3
MOVQ 24(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 24(CX)
ADDQ AX, R8
ADCQ DX, DI
// r2 = 2×l0×l2
MOVQ (CX), AX
SHLQ $0x01, AX
MULQ 16(CX)
MOVQ AX, R10
MOVQ DX, R9
// r2 += l1×l1
MOVQ 8(CX), AX
MULQ 8(CX)
ADDQ AX, R10
ADCQ DX, R9
// r2 += 38×l3×l4
MOVQ 24(CX), AX
IMUL3Q $0x26, AX, AX
MULQ 32(CX)
ADDQ AX, R10
ADCQ DX, R9
// r3 = 2×l0×l3
MOVQ (CX), AX
SHLQ $0x01, AX
MULQ 24(CX)
MOVQ AX, R12
MOVQ DX, R11
// r3 += 2×l1×l2
MOVQ 8(CX), AX
IMUL3Q $0x02, AX, AX
MULQ 16(CX)
ADDQ AX, R12
ADCQ DX, R11
// r3 += 19×l4×l4
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(CX)
ADDQ AX, R12
ADCQ DX, R11
// r4 = 2×l0×l4
MOVQ (CX), AX
SHLQ $0x01, AX
MULQ 32(CX)
MOVQ AX, R14
MOVQ DX, R13
// r4 += 2×l1×l3
MOVQ 8(CX), AX
IMUL3Q $0x02, AX, AX
MULQ 24(CX)
ADDQ AX, R14
ADCQ DX, R13
// r4 += l2×l2
MOVQ 16(CX), AX
MULQ 16(CX)
ADDQ AX, R14
ADCQ DX, R13
// First reduction chain
MOVQ $0x0007ffffffffffff, AX
SHLQ $0x0d, SI, BX
SHLQ $0x0d, R8, DI
SHLQ $0x0d, R10, R9
SHLQ $0x0d, R12, R11
SHLQ $0x0d, R14, R13
ANDQ AX, SI
IMUL3Q $0x13, R13, R13
ADDQ R13, SI
ANDQ AX, R8
ADDQ BX, R8
ANDQ AX, R10
ADDQ DI, R10
ANDQ AX, R12
ADDQ R9, R12
ANDQ AX, R14
ADDQ R11, R14
// Second reduction chain (carryPropagate)
MOVQ SI, BX
SHRQ $0x33, BX
MOVQ R8, DI
SHRQ $0x33, DI
MOVQ R10, R9
SHRQ $0x33, R9
MOVQ R12, R11
SHRQ $0x33, R11
MOVQ R14, R13
SHRQ $0x33, R13
ANDQ AX, SI
IMUL3Q $0x13, R13, R13
ADDQ R13, SI
ANDQ AX, R8
ADDQ BX, R8
ANDQ AX, R10
ADDQ DI, R10
ANDQ AX, R12
ADDQ R9, R12
ANDQ AX, R14
ADDQ R11, R14
// Store output
MOVQ out+0(FP), AX
MOVQ SI, (AX)
MOVQ R8, 8(AX)
MOVQ R10, 16(AX)
MOVQ R12, 24(AX)
MOVQ R14, 32(AX)
RET

12
vendor/filippo.io/edwards25519/field/fe_amd64_noasm.go generated vendored Normal file
View File

@ -0,0 +1,12 @@
// Copyright (c) 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !amd64 || !gc || purego
// +build !amd64 !gc purego
package field
func feMul(v, x, y *Element) { feMulGeneric(v, x, y) }
func feSquare(v, x *Element) { feSquareGeneric(v, x) }

16
vendor/filippo.io/edwards25519/field/fe_arm64.go generated vendored Normal file
View File

@ -0,0 +1,16 @@
// Copyright (c) 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build arm64 && gc && !purego
// +build arm64,gc,!purego
package field
//go:noescape
func carryPropagate(v *Element)
func (v *Element) carryPropagate() *Element {
carryPropagate(v)
return v
}

42
vendor/filippo.io/edwards25519/field/fe_arm64.s generated vendored Normal file
View File

@ -0,0 +1,42 @@
// Copyright (c) 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build arm64,gc,!purego
#include "textflag.h"
// carryPropagate works exactly like carryPropagateGeneric and uses the
// same AND, ADD, and LSR+MADD instructions emitted by the compiler, but
// avoids loading R0-R4 twice and uses LDP and STP.
//
// See https://golang.org/issues/43145 for the main compiler issue.
//
// func carryPropagate(v *Element)
TEXT ·carryPropagate(SB),NOFRAME|NOSPLIT,$0-8
MOVD v+0(FP), R20
LDP 0(R20), (R0, R1)
LDP 16(R20), (R2, R3)
MOVD 32(R20), R4
AND $0x7ffffffffffff, R0, R10
AND $0x7ffffffffffff, R1, R11
AND $0x7ffffffffffff, R2, R12
AND $0x7ffffffffffff, R3, R13
AND $0x7ffffffffffff, R4, R14
ADD R0>>51, R11, R11
ADD R1>>51, R12, R12
ADD R2>>51, R13, R13
ADD R3>>51, R14, R14
// R4>>51 * 19 + R10 -> R10
LSR $51, R4, R21
MOVD $19, R22
MADD R22, R10, R21, R10
STP (R10, R11), 0(R20)
STP (R12, R13), 16(R20)
MOVD R14, 32(R20)
RET

12
vendor/filippo.io/edwards25519/field/fe_arm64_noasm.go generated vendored Normal file
View File

@ -0,0 +1,12 @@
// Copyright (c) 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !arm64 || !gc || purego
// +build !arm64 !gc purego
package field
func (v *Element) carryPropagate() *Element {
return v.carryPropagateGeneric()
}

264
vendor/filippo.io/edwards25519/field/fe_generic.go generated vendored Normal file
View File

@ -0,0 +1,264 @@
// Copyright (c) 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package field
import "math/bits"
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
// bits.Mul64 and bits.Add64 intrinsics.
type uint128 struct {
lo, hi uint64
}
// mul64 returns a * b.
func mul64(a, b uint64) uint128 {
hi, lo := bits.Mul64(a, b)
return uint128{lo, hi}
}
// addMul64 returns v + a * b.
func addMul64(v uint128, a, b uint64) uint128 {
hi, lo := bits.Mul64(a, b)
lo, c := bits.Add64(lo, v.lo, 0)
hi, _ = bits.Add64(hi, v.hi, c)
return uint128{lo, hi}
}
// shiftRightBy51 returns a >> 51. a is assumed to be at most 115 bits.
func shiftRightBy51(a uint128) uint64 {
return (a.hi << (64 - 51)) | (a.lo >> 51)
}
func feMulGeneric(v, a, b *Element) {
a0 := a.l0
a1 := a.l1
a2 := a.l2
a3 := a.l3
a4 := a.l4
b0 := b.l0
b1 := b.l1
b2 := b.l2
b3 := b.l3
b4 := b.l4
// Limb multiplication works like pen-and-paper columnar multiplication, but
// with 51-bit limbs instead of digits.
//
// a4 a3 a2 a1 a0 x
// b4 b3 b2 b1 b0 =
// ------------------------
// a4b0 a3b0 a2b0 a1b0 a0b0 +
// a4b1 a3b1 a2b1 a1b1 a0b1 +
// a4b2 a3b2 a2b2 a1b2 a0b2 +
// a4b3 a3b3 a2b3 a1b3 a0b3 +
// a4b4 a3b4 a2b4 a1b4 a0b4 =
// ----------------------------------------------
// r8 r7 r6 r5 r4 r3 r2 r1 r0
//
// We can then use the reduction identity (a * 2²⁵⁵ + b = a * 19 + b) to
// reduce the limbs that would overflow 255 bits. r5 * 2²⁵⁵ becomes 19 * r5,
// r6 * 2³⁰⁶ becomes 19 * r6 * 2⁵¹, etc.
//
// Reduction can be carried out simultaneously to multiplication. For
// example, we do not compute r5: whenever the result of a multiplication
// belongs to r5, like a1b4, we multiply it by 19 and add the result to r0.
//
// a4b0 a3b0 a2b0 a1b0 a0b0 +
// a3b1 a2b1 a1b1 a0b1 19×a4b1 +
// a2b2 a1b2 a0b2 19×a4b2 19×a3b2 +
// a1b3 a0b3 19×a4b3 19×a3b3 19×a2b3 +
// a0b4 19×a4b4 19×a3b4 19×a2b4 19×a1b4 =
// --------------------------------------
// r4 r3 r2 r1 r0
//
// Finally we add up the columns into wide, overlapping limbs.
a1_19 := a1 * 19
a2_19 := a2 * 19
a3_19 := a3 * 19
a4_19 := a4 * 19
// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
r0 := mul64(a0, b0)
r0 = addMul64(r0, a1_19, b4)
r0 = addMul64(r0, a2_19, b3)
r0 = addMul64(r0, a3_19, b2)
r0 = addMul64(r0, a4_19, b1)
// r1 = a0×b1 + a1×b0 + 19×(a2×b4 + a3×b3 + a4×b2)
r1 := mul64(a0, b1)
r1 = addMul64(r1, a1, b0)
r1 = addMul64(r1, a2_19, b4)
r1 = addMul64(r1, a3_19, b3)
r1 = addMul64(r1, a4_19, b2)
// r2 = a0×b2 + a1×b1 + a2×b0 + 19×(a3×b4 + a4×b3)
r2 := mul64(a0, b2)
r2 = addMul64(r2, a1, b1)
r2 = addMul64(r2, a2, b0)
r2 = addMul64(r2, a3_19, b4)
r2 = addMul64(r2, a4_19, b3)
// r3 = a0×b3 + a1×b2 + a2×b1 + a3×b0 + 19×a4×b4
r3 := mul64(a0, b3)
r3 = addMul64(r3, a1, b2)
r3 = addMul64(r3, a2, b1)
r3 = addMul64(r3, a3, b0)
r3 = addMul64(r3, a4_19, b4)
// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
r4 := mul64(a0, b4)
r4 = addMul64(r4, a1, b3)
r4 = addMul64(r4, a2, b2)
r4 = addMul64(r4, a3, b1)
r4 = addMul64(r4, a4, b0)
// After the multiplication, we need to reduce (carry) the five coefficients
// to obtain a result with limbs that are at most slightly larger than 2⁵¹,
// to respect the Element invariant.
//
// Overall, the reduction works the same as carryPropagate, except with
// wider inputs: we take the carry for each coefficient by shifting it right
// by 51, and add it to the limb above it. The top carry is multiplied by 19
// according to the reduction identity and added to the lowest limb.
//
// The largest coefficient (r0) will be at most 111 bits, which guarantees
// that all carries are at most 111 - 51 = 60 bits, which fits in a uint64.
//
// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
// r0 < 2⁵²×2⁵² + 19×(2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵²)
// r0 < (1 + 19 × 4) × 2⁵² × 2⁵²
// r0 < 2⁷ × 2⁵² × 2⁵²
// r0 < 2¹¹¹
//
// Moreover, the top coefficient (r4) is at most 107 bits, so c4 is at most
// 56 bits, and c4 * 19 is at most 61 bits, which again fits in a uint64 and
// allows us to easily apply the reduction identity.
//
// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
// r4 < 5 × 2⁵² × 2⁵²
// r4 < 2¹⁰⁷
//
c0 := shiftRightBy51(r0)
c1 := shiftRightBy51(r1)
c2 := shiftRightBy51(r2)
c3 := shiftRightBy51(r3)
c4 := shiftRightBy51(r4)
rr0 := r0.lo&maskLow51Bits + c4*19
rr1 := r1.lo&maskLow51Bits + c0
rr2 := r2.lo&maskLow51Bits + c1
rr3 := r3.lo&maskLow51Bits + c2
rr4 := r4.lo&maskLow51Bits + c3
// Now all coefficients fit into 64-bit registers but are still too large to
// be passed around as a Element. We therefore do one last carry chain,
// where the carries will be small enough to fit in the wiggle room above 2⁵¹.
*v = Element{rr0, rr1, rr2, rr3, rr4}
v.carryPropagate()
}
func feSquareGeneric(v, a *Element) {
l0 := a.l0
l1 := a.l1
l2 := a.l2
l3 := a.l3
l4 := a.l4
// Squaring works precisely like multiplication above, but thanks to its
// symmetry we get to group a few terms together.
//
// l4 l3 l2 l1 l0 x
// l4 l3 l2 l1 l0 =
// ------------------------
// l4l0 l3l0 l2l0 l1l0 l0l0 +
// l4l1 l3l1 l2l1 l1l1 l0l1 +
// l4l2 l3l2 l2l2 l1l2 l0l2 +
// l4l3 l3l3 l2l3 l1l3 l0l3 +
// l4l4 l3l4 l2l4 l1l4 l0l4 =
// ----------------------------------------------
// r8 r7 r6 r5 r4 r3 r2 r1 r0
//
// l4l0 l3l0 l2l0 l1l0 l0l0 +
// l3l1 l2l1 l1l1 l0l1 19×l4l1 +
// l2l2 l1l2 l0l2 19×l4l2 19×l3l2 +
// l1l3 l0l3 19×l4l3 19×l3l3 19×l2l3 +
// l0l4 19×l4l4 19×l3l4 19×l2l4 19×l1l4 =
// --------------------------------------
// r4 r3 r2 r1 r0
//
// With precomputed 2×, 19×, and 2×19× terms, we can compute each limb with
// only three Mul64 and four Add64, instead of five and eight.
l0_2 := l0 * 2
l1_2 := l1 * 2
l1_38 := l1 * 38
l2_38 := l2 * 38
l3_38 := l3 * 38
l3_19 := l3 * 19
l4_19 := l4 * 19
// r0 = l0×l0 + 19×(l1×l4 + l2×l3 + l3×l2 + l4×l1) = l0×l0 + 19×2×(l1×l4 + l2×l3)
r0 := mul64(l0, l0)
r0 = addMul64(r0, l1_38, l4)
r0 = addMul64(r0, l2_38, l3)
// r1 = l0×l1 + l1×l0 + 19×(l2×l4 + l3×l3 + l4×l2) = 2×l0×l1 + 19×2×l2×l4 + 19×l3×l3
r1 := mul64(l0_2, l1)
r1 = addMul64(r1, l2_38, l4)
r1 = addMul64(r1, l3_19, l3)
// r2 = l0×l2 + l1×l1 + l2×l0 + 19×(l3×l4 + l4×l3) = 2×l0×l2 + l1×l1 + 19×2×l3×l4
r2 := mul64(l0_2, l2)
r2 = addMul64(r2, l1, l1)
r2 = addMul64(r2, l3_38, l4)
// r3 = l0×l3 + l1×l2 + l2×l1 + l3×l0 + 19×l4×l4 = 2×l0×l3 + 2×l1×l2 + 19×l4×l4
r3 := mul64(l0_2, l3)
r3 = addMul64(r3, l1_2, l2)
r3 = addMul64(r3, l4_19, l4)
// r4 = l0×l4 + l1×l3 + l2×l2 + l3×l1 + l4×l0 = 2×l0×l4 + 2×l1×l3 + l2×l2
r4 := mul64(l0_2, l4)
r4 = addMul64(r4, l1_2, l3)
r4 = addMul64(r4, l2, l2)
c0 := shiftRightBy51(r0)
c1 := shiftRightBy51(r1)
c2 := shiftRightBy51(r2)
c3 := shiftRightBy51(r3)
c4 := shiftRightBy51(r4)
rr0 := r0.lo&maskLow51Bits + c4*19
rr1 := r1.lo&maskLow51Bits + c0
rr2 := r2.lo&maskLow51Bits + c1
rr3 := r3.lo&maskLow51Bits + c2
rr4 := r4.lo&maskLow51Bits + c3
*v = Element{rr0, rr1, rr2, rr3, rr4}
v.carryPropagate()
}
// carryPropagate brings the limbs below 52 bits by applying the reduction
// identity (a * 2²⁵⁵ + b = a * 19 + b) to the l4 carry.
func (v *Element) carryPropagateGeneric() *Element {
c0 := v.l0 >> 51
c1 := v.l1 >> 51
c2 := v.l2 >> 51
c3 := v.l3 >> 51
c4 := v.l4 >> 51
v.l0 = v.l0&maskLow51Bits + c4*19
v.l1 = v.l1&maskLow51Bits + c0
v.l2 = v.l2&maskLow51Bits + c1
v.l3 = v.l3&maskLow51Bits + c2
v.l4 = v.l4&maskLow51Bits + c3
return v
}

1027
vendor/filippo.io/edwards25519/scalar.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

214
vendor/filippo.io/edwards25519/scalarmult.go generated vendored Normal file
View File

@ -0,0 +1,214 @@
// Copyright (c) 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package edwards25519
import "sync"
// basepointTable is a set of 32 affineLookupTables, where table i is generated
// from 256i * basepoint. It is precomputed the first time it's used.
func basepointTable() *[32]affineLookupTable {
basepointTablePrecomp.initOnce.Do(func() {
p := NewGeneratorPoint()
for i := 0; i < 32; i++ {
basepointTablePrecomp.table[i].FromP3(p)
for j := 0; j < 8; j++ {
p.Add(p, p)
}
}
})
return &basepointTablePrecomp.table
}
var basepointTablePrecomp struct {
table [32]affineLookupTable
initOnce sync.Once
}
// ScalarBaseMult sets v = x * B, where B is the canonical generator, and
// returns v.
//
// The scalar multiplication is done in constant time.
func (v *Point) ScalarBaseMult(x *Scalar) *Point {
basepointTable := basepointTable()
// Write x = sum(x_i * 16^i) so x*B = sum( B*x_i*16^i )
// as described in the Ed25519 paper
//
// Group even and odd coefficients
// x*B = x_0*16^0*B + x_2*16^2*B + ... + x_62*16^62*B
// + x_1*16^1*B + x_3*16^3*B + ... + x_63*16^63*B
// x*B = x_0*16^0*B + x_2*16^2*B + ... + x_62*16^62*B
// + 16*( x_1*16^0*B + x_3*16^2*B + ... + x_63*16^62*B)
//
// We use a lookup table for each i to get x_i*16^(2*i)*B
// and do four doublings to multiply by 16.
digits := x.signedRadix16()
multiple := &affineCached{}
tmp1 := &projP1xP1{}
tmp2 := &projP2{}
// Accumulate the odd components first
v.Set(NewIdentityPoint())
for i := 1; i < 64; i += 2 {
basepointTable[i/2].SelectInto(multiple, digits[i])
tmp1.AddAffine(v, multiple)
v.fromP1xP1(tmp1)
}
// Multiply by 16
tmp2.FromP3(v) // tmp2 = v in P2 coords
tmp1.Double(tmp2) // tmp1 = 2*v in P1xP1 coords
tmp2.FromP1xP1(tmp1) // tmp2 = 2*v in P2 coords
tmp1.Double(tmp2) // tmp1 = 4*v in P1xP1 coords
tmp2.FromP1xP1(tmp1) // tmp2 = 4*v in P2 coords
tmp1.Double(tmp2) // tmp1 = 8*v in P1xP1 coords
tmp2.FromP1xP1(tmp1) // tmp2 = 8*v in P2 coords
tmp1.Double(tmp2) // tmp1 = 16*v in P1xP1 coords
v.fromP1xP1(tmp1) // now v = 16*(odd components)
// Accumulate the even components
for i := 0; i < 64; i += 2 {
basepointTable[i/2].SelectInto(multiple, digits[i])
tmp1.AddAffine(v, multiple)
v.fromP1xP1(tmp1)
}
return v
}
// ScalarMult sets v = x * q, and returns v.
//
// The scalar multiplication is done in constant time.
func (v *Point) ScalarMult(x *Scalar, q *Point) *Point {
checkInitialized(q)
var table projLookupTable
table.FromP3(q)
// Write x = sum(x_i * 16^i)
// so x*Q = sum( Q*x_i*16^i )
// = Q*x_0 + 16*(Q*x_1 + 16*( ... + Q*x_63) ... )
// <------compute inside out---------
//
// We use the lookup table to get the x_i*Q values
// and do four doublings to compute 16*Q
digits := x.signedRadix16()
// Unwrap first loop iteration to save computing 16*identity
multiple := &projCached{}
tmp1 := &projP1xP1{}
tmp2 := &projP2{}
table.SelectInto(multiple, digits[63])
v.Set(NewIdentityPoint())
tmp1.Add(v, multiple) // tmp1 = x_63*Q in P1xP1 coords
for i := 62; i >= 0; i-- {
tmp2.FromP1xP1(tmp1) // tmp2 = (prev) in P2 coords
tmp1.Double(tmp2) // tmp1 = 2*(prev) in P1xP1 coords
tmp2.FromP1xP1(tmp1) // tmp2 = 2*(prev) in P2 coords
tmp1.Double(tmp2) // tmp1 = 4*(prev) in P1xP1 coords
tmp2.FromP1xP1(tmp1) // tmp2 = 4*(prev) in P2 coords
tmp1.Double(tmp2) // tmp1 = 8*(prev) in P1xP1 coords
tmp2.FromP1xP1(tmp1) // tmp2 = 8*(prev) in P2 coords
tmp1.Double(tmp2) // tmp1 = 16*(prev) in P1xP1 coords
v.fromP1xP1(tmp1) // v = 16*(prev) in P3 coords
table.SelectInto(multiple, digits[i])
tmp1.Add(v, multiple) // tmp1 = x_i*Q + 16*(prev) in P1xP1 coords
}
v.fromP1xP1(tmp1)
return v
}
// basepointNafTable is the nafLookupTable8 for the basepoint.
// It is precomputed the first time it's used.
func basepointNafTable() *nafLookupTable8 {
basepointNafTablePrecomp.initOnce.Do(func() {
basepointNafTablePrecomp.table.FromP3(NewGeneratorPoint())
})
return &basepointNafTablePrecomp.table
}
var basepointNafTablePrecomp struct {
table nafLookupTable8
initOnce sync.Once
}
// VarTimeDoubleScalarBaseMult sets v = a * A + b * B, where B is the canonical
// generator, and returns v.
//
// Execution time depends on the inputs.
func (v *Point) VarTimeDoubleScalarBaseMult(a *Scalar, A *Point, b *Scalar) *Point {
checkInitialized(A)
// Similarly to the single variable-base approach, we compute
// digits and use them with a lookup table. However, because
// we are allowed to do variable-time operations, we don't
// need constant-time lookups or constant-time digit
// computations.
//
// So we use a non-adjacent form of some width w instead of
// radix 16. This is like a binary representation (one digit
// for each binary place) but we allow the digits to grow in
// magnitude up to 2^{w-1} so that the nonzero digits are as
// sparse as possible. Intuitively, this "condenses" the
// "mass" of the scalar onto sparse coefficients (meaning
// fewer additions).
basepointNafTable := basepointNafTable()
var aTable nafLookupTable5
aTable.FromP3(A)
// Because the basepoint is fixed, we can use a wider NAF
// corresponding to a bigger table.
aNaf := a.nonAdjacentForm(5)
bNaf := b.nonAdjacentForm(8)
// Find the first nonzero coefficient.
i := 255
for j := i; j >= 0; j-- {
if aNaf[j] != 0 || bNaf[j] != 0 {
break
}
}
multA := &projCached{}
multB := &affineCached{}
tmp1 := &projP1xP1{}
tmp2 := &projP2{}
tmp2.Zero()
// Move from high to low bits, doubling the accumulator
// at each iteration and checking whether there is a nonzero
// coefficient to look up a multiple of.
for ; i >= 0; i-- {
tmp1.Double(tmp2)
// Only update v if we have a nonzero coeff to add in.
if aNaf[i] > 0 {
v.fromP1xP1(tmp1)
aTable.SelectInto(multA, aNaf[i])
tmp1.Add(v, multA)
} else if aNaf[i] < 0 {
v.fromP1xP1(tmp1)
aTable.SelectInto(multA, -aNaf[i])
tmp1.Sub(v, multA)
}
if bNaf[i] > 0 {
v.fromP1xP1(tmp1)
basepointNafTable.SelectInto(multB, bNaf[i])
tmp1.AddAffine(v, multB)
} else if bNaf[i] < 0 {
v.fromP1xP1(tmp1)
basepointNafTable.SelectInto(multB, -bNaf[i])
tmp1.SubAffine(v, multB)
}
tmp2.FromP1xP1(tmp1)
}
v.fromP2(tmp2)
return v
}

129
vendor/filippo.io/edwards25519/tables.go generated vendored Normal file
View File

@ -0,0 +1,129 @@
// Copyright (c) 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package edwards25519
import (
"crypto/subtle"
)
// A dynamic lookup table for variable-base, constant-time scalar muls.
type projLookupTable struct {
points [8]projCached
}
// A precomputed lookup table for fixed-base, constant-time scalar muls.
type affineLookupTable struct {
points [8]affineCached
}
// A dynamic lookup table for variable-base, variable-time scalar muls.
type nafLookupTable5 struct {
points [8]projCached
}
// A precomputed lookup table for fixed-base, variable-time scalar muls.
type nafLookupTable8 struct {
points [64]affineCached
}
// Constructors.
// Builds a lookup table at runtime. Fast.
func (v *projLookupTable) FromP3(q *Point) {
// Goal: v.points[i] = (i+1)*Q, i.e., Q, 2Q, ..., 8Q
// This allows lookup of -8Q, ..., -Q, 0, Q, ..., 8Q
v.points[0].FromP3(q)
tmpP3 := Point{}
tmpP1xP1 := projP1xP1{}
for i := 0; i < 7; i++ {
// Compute (i+1)*Q as Q + i*Q and convert to a ProjCached
// This is needlessly complicated because the API has explicit
// recievers instead of creating stack objects and relying on RVO
v.points[i+1].FromP3(tmpP3.fromP1xP1(tmpP1xP1.Add(q, &v.points[i])))
}
}
// This is not optimised for speed; fixed-base tables should be precomputed.
func (v *affineLookupTable) FromP3(q *Point) {
// Goal: v.points[i] = (i+1)*Q, i.e., Q, 2Q, ..., 8Q
// This allows lookup of -8Q, ..., -Q, 0, Q, ..., 8Q
v.points[0].FromP3(q)
tmpP3 := Point{}
tmpP1xP1 := projP1xP1{}
for i := 0; i < 7; i++ {
// Compute (i+1)*Q as Q + i*Q and convert to AffineCached
v.points[i+1].FromP3(tmpP3.fromP1xP1(tmpP1xP1.AddAffine(q, &v.points[i])))
}
}
// Builds a lookup table at runtime. Fast.
func (v *nafLookupTable5) FromP3(q *Point) {
// Goal: v.points[i] = (2*i+1)*Q, i.e., Q, 3Q, 5Q, ..., 15Q
// This allows lookup of -15Q, ..., -3Q, -Q, 0, Q, 3Q, ..., 15Q
v.points[0].FromP3(q)
q2 := Point{}
q2.Add(q, q)
tmpP3 := Point{}
tmpP1xP1 := projP1xP1{}
for i := 0; i < 7; i++ {
v.points[i+1].FromP3(tmpP3.fromP1xP1(tmpP1xP1.Add(&q2, &v.points[i])))
}
}
// This is not optimised for speed; fixed-base tables should be precomputed.
func (v *nafLookupTable8) FromP3(q *Point) {
v.points[0].FromP3(q)
q2 := Point{}
q2.Add(q, q)
tmpP3 := Point{}
tmpP1xP1 := projP1xP1{}
for i := 0; i < 63; i++ {
v.points[i+1].FromP3(tmpP3.fromP1xP1(tmpP1xP1.AddAffine(&q2, &v.points[i])))
}
}
// Selectors.
// Set dest to x*Q, where -8 <= x <= 8, in constant time.
func (v *projLookupTable) SelectInto(dest *projCached, x int8) {
// Compute xabs = |x|
xmask := x >> 7
xabs := uint8((x + xmask) ^ xmask)
dest.Zero()
for j := 1; j <= 8; j++ {
// Set dest = j*Q if |x| = j
cond := subtle.ConstantTimeByteEq(xabs, uint8(j))
dest.Select(&v.points[j-1], dest, cond)
}
// Now dest = |x|*Q, conditionally negate to get x*Q
dest.CondNeg(int(xmask & 1))
}
// Set dest to x*Q, where -8 <= x <= 8, in constant time.
func (v *affineLookupTable) SelectInto(dest *affineCached, x int8) {
// Compute xabs = |x|
xmask := x >> 7
xabs := uint8((x + xmask) ^ xmask)
dest.Zero()
for j := 1; j <= 8; j++ {
// Set dest = j*Q if |x| = j
cond := subtle.ConstantTimeByteEq(xabs, uint8(j))
dest.Select(&v.points[j-1], dest, cond)
}
// Now dest = |x|*Q, conditionally negate to get x*Q
dest.CondNeg(int(xmask & 1))
}
// Given odd x with 0 < x < 2^4, return x*Q (in variable time).
func (v *nafLookupTable5) SelectInto(dest *projCached, x int8) {
*dest = v.points[x/2]
}
// Given odd x with 0 < x < 2^7, return x*Q (in variable time).
func (v *nafLookupTable8) SelectInto(dest *affineCached, x int8) {
*dest = v.points[x/2]
}