4
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2025-06-26 13:09:24 +00:00

Add dependencies/vendor (whatsapp)

This commit is contained in:
Wim
2022-01-31 00:27:37 +01:00
parent e7b193788a
commit e3cafeaf92
1074 changed files with 3091569 additions and 26075 deletions

419
vendor/filippo.io/edwards25519/field/fe.go generated vendored Normal file
View File

@ -0,0 +1,419 @@
// Copyright (c) 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package field implements fast arithmetic modulo 2^255-19.
package field
import (
"crypto/subtle"
"encoding/binary"
"errors"
"math/bits"
)
// Element represents an element of the field GF(2^255-19). Note that this
// is not a cryptographically secure group, and should only be used to interact
// with edwards25519.Point coordinates.
//
// This type works similarly to math/big.Int, and all arguments and receivers
// are allowed to alias.
//
// The zero value is a valid zero element.
type Element struct {
// An element t represents the integer
// t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204
//
// Between operations, all limbs are expected to be lower than 2^52.
l0 uint64
l1 uint64
l2 uint64
l3 uint64
l4 uint64
}
const maskLow51Bits uint64 = (1 << 51) - 1
var feZero = &Element{0, 0, 0, 0, 0}
// Zero sets v = 0, and returns v.
func (v *Element) Zero() *Element {
*v = *feZero
return v
}
var feOne = &Element{1, 0, 0, 0, 0}
// One sets v = 1, and returns v.
func (v *Element) One() *Element {
*v = *feOne
return v
}
// reduce reduces v modulo 2^255 - 19 and returns it.
func (v *Element) reduce() *Element {
v.carryPropagate()
// After the light reduction we now have a field element representation
// v < 2^255 + 2^13 * 19, but need v < 2^255 - 19.
// If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1,
// generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise.
c := (v.l0 + 19) >> 51
c = (v.l1 + c) >> 51
c = (v.l2 + c) >> 51
c = (v.l3 + c) >> 51
c = (v.l4 + c) >> 51
// If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's
// effectively applying the reduction identity to the carry.
v.l0 += 19 * c
v.l1 += v.l0 >> 51
v.l0 = v.l0 & maskLow51Bits
v.l2 += v.l1 >> 51
v.l1 = v.l1 & maskLow51Bits
v.l3 += v.l2 >> 51
v.l2 = v.l2 & maskLow51Bits
v.l4 += v.l3 >> 51
v.l3 = v.l3 & maskLow51Bits
// no additional carry
v.l4 = v.l4 & maskLow51Bits
return v
}
// Add sets v = a + b, and returns v.
func (v *Element) Add(a, b *Element) *Element {
v.l0 = a.l0 + b.l0
v.l1 = a.l1 + b.l1
v.l2 = a.l2 + b.l2
v.l3 = a.l3 + b.l3
v.l4 = a.l4 + b.l4
// Using the generic implementation here is actually faster than the
// assembly. Probably because the body of this function is so simple that
// the compiler can figure out better optimizations by inlining the carry
// propagation.
return v.carryPropagateGeneric()
}
// Subtract sets v = a - b, and returns v.
func (v *Element) Subtract(a, b *Element) *Element {
// We first add 2 * p, to guarantee the subtraction won't underflow, and
// then subtract b (which can be up to 2^255 + 2^13 * 19).
v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0
v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1
v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2
v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3
v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4
return v.carryPropagate()
}
// Negate sets v = -a, and returns v.
func (v *Element) Negate(a *Element) *Element {
return v.Subtract(feZero, a)
}
// Invert sets v = 1/z mod p, and returns v.
//
// If z == 0, Invert returns v = 0.
func (v *Element) Invert(z *Element) *Element {
// Inversion is implemented as exponentiation with exponent p 2. It uses the
// same sequence of 255 squarings and 11 multiplications as [Curve25519].
var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element
z2.Square(z) // 2
t.Square(&z2) // 4
t.Square(&t) // 8
z9.Multiply(&t, z) // 9
z11.Multiply(&z9, &z2) // 11
t.Square(&z11) // 22
z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0
t.Square(&z2_5_0) // 2^6 - 2^1
for i := 0; i < 4; i++ {
t.Square(&t) // 2^10 - 2^5
}
z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0
t.Square(&z2_10_0) // 2^11 - 2^1
for i := 0; i < 9; i++ {
t.Square(&t) // 2^20 - 2^10
}
z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0
t.Square(&z2_20_0) // 2^21 - 2^1
for i := 0; i < 19; i++ {
t.Square(&t) // 2^40 - 2^20
}
t.Multiply(&t, &z2_20_0) // 2^40 - 2^0
t.Square(&t) // 2^41 - 2^1
for i := 0; i < 9; i++ {
t.Square(&t) // 2^50 - 2^10
}
z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0
t.Square(&z2_50_0) // 2^51 - 2^1
for i := 0; i < 49; i++ {
t.Square(&t) // 2^100 - 2^50
}
z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0
t.Square(&z2_100_0) // 2^101 - 2^1
for i := 0; i < 99; i++ {
t.Square(&t) // 2^200 - 2^100
}
t.Multiply(&t, &z2_100_0) // 2^200 - 2^0
t.Square(&t) // 2^201 - 2^1
for i := 0; i < 49; i++ {
t.Square(&t) // 2^250 - 2^50
}
t.Multiply(&t, &z2_50_0) // 2^250 - 2^0
t.Square(&t) // 2^251 - 2^1
t.Square(&t) // 2^252 - 2^2
t.Square(&t) // 2^253 - 2^3
t.Square(&t) // 2^254 - 2^4
t.Square(&t) // 2^255 - 2^5
return v.Multiply(&t, &z11) // 2^255 - 21
}
// Set sets v = a, and returns v.
func (v *Element) Set(a *Element) *Element {
*v = *a
return v
}
// SetBytes sets v to x, where x is a 32-byte little-endian encoding. If x is
// not of the right length, SetUniformBytes returns nil and an error, and the
// receiver is unchanged.
//
// Consistent with RFC 7748, the most significant bit (the high bit of the
// last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
// are accepted. Note that this is laxer than specified by RFC 8032.
func (v *Element) SetBytes(x []byte) (*Element, error) {
if len(x) != 32 {
return nil, errors.New("edwards25519: invalid field element input size")
}
// Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51).
v.l0 = binary.LittleEndian.Uint64(x[0:8])
v.l0 &= maskLow51Bits
// Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51).
v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3
v.l1 &= maskLow51Bits
// Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51).
v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6
v.l2 &= maskLow51Bits
// Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51).
v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1
v.l3 &= maskLow51Bits
// Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51).
// Note: not bytes 25:33, shift 4, to avoid overread.
v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12
v.l4 &= maskLow51Bits
return v, nil
}
// Bytes returns the canonical 32-byte little-endian encoding of v.
func (v *Element) Bytes() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [32]byte
return v.bytes(&out)
}
func (v *Element) bytes(out *[32]byte) []byte {
t := *v
t.reduce()
var buf [8]byte
for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} {
bitsOffset := i * 51
binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8))
for i, bb := range buf {
off := bitsOffset/8 + i
if off >= len(out) {
break
}
out[off] |= bb
}
}
return out[:]
}
// Equal returns 1 if v and u are equal, and 0 otherwise.
func (v *Element) Equal(u *Element) int {
sa, sv := u.Bytes(), v.Bytes()
return subtle.ConstantTimeCompare(sa, sv)
}
// mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise.
func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) }
// Select sets v to a if cond == 1, and to b if cond == 0.
func (v *Element) Select(a, b *Element, cond int) *Element {
m := mask64Bits(cond)
v.l0 = (m & a.l0) | (^m & b.l0)
v.l1 = (m & a.l1) | (^m & b.l1)
v.l2 = (m & a.l2) | (^m & b.l2)
v.l3 = (m & a.l3) | (^m & b.l3)
v.l4 = (m & a.l4) | (^m & b.l4)
return v
}
// Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v.
func (v *Element) Swap(u *Element, cond int) {
m := mask64Bits(cond)
t := m & (v.l0 ^ u.l0)
v.l0 ^= t
u.l0 ^= t
t = m & (v.l1 ^ u.l1)
v.l1 ^= t
u.l1 ^= t
t = m & (v.l2 ^ u.l2)
v.l2 ^= t
u.l2 ^= t
t = m & (v.l3 ^ u.l3)
v.l3 ^= t
u.l3 ^= t
t = m & (v.l4 ^ u.l4)
v.l4 ^= t
u.l4 ^= t
}
// IsNegative returns 1 if v is negative, and 0 otherwise.
func (v *Element) IsNegative() int {
return int(v.Bytes()[0] & 1)
}
// Absolute sets v to |u|, and returns v.
func (v *Element) Absolute(u *Element) *Element {
return v.Select(new(Element).Negate(u), u, u.IsNegative())
}
// Multiply sets v = x * y, and returns v.
func (v *Element) Multiply(x, y *Element) *Element {
feMul(v, x, y)
return v
}
// Square sets v = x * x, and returns v.
func (v *Element) Square(x *Element) *Element {
feSquare(v, x)
return v
}
// Mult32 sets v = x * y, and returns v.
func (v *Element) Mult32(x *Element, y uint32) *Element {
x0lo, x0hi := mul51(x.l0, y)
x1lo, x1hi := mul51(x.l1, y)
x2lo, x2hi := mul51(x.l2, y)
x3lo, x3hi := mul51(x.l3, y)
x4lo, x4hi := mul51(x.l4, y)
v.l0 = x0lo + 19*x4hi // carried over per the reduction identity
v.l1 = x1lo + x0hi
v.l2 = x2lo + x1hi
v.l3 = x3lo + x2hi
v.l4 = x4lo + x3hi
// The hi portions are going to be only 32 bits, plus any previous excess,
// so we can skip the carry propagation.
return v
}
// mul51 returns lo + hi * 2⁵¹ = a * b.
func mul51(a uint64, b uint32) (lo uint64, hi uint64) {
mh, ml := bits.Mul64(a, uint64(b))
lo = ml & maskLow51Bits
hi = (mh << 13) | (ml >> 51)
return
}
// Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3.
func (v *Element) Pow22523(x *Element) *Element {
var t0, t1, t2 Element
t0.Square(x) // x^2
t1.Square(&t0) // x^4
t1.Square(&t1) // x^8
t1.Multiply(x, &t1) // x^9
t0.Multiply(&t0, &t1) // x^11
t0.Square(&t0) // x^22
t0.Multiply(&t1, &t0) // x^31
t1.Square(&t0) // x^62
for i := 1; i < 5; i++ { // x^992
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // x^1023 -> 1023 = 2^10 - 1
t1.Square(&t0) // 2^11 - 2
for i := 1; i < 10; i++ { // 2^20 - 2^10
t1.Square(&t1)
}
t1.Multiply(&t1, &t0) // 2^20 - 1
t2.Square(&t1) // 2^21 - 2
for i := 1; i < 20; i++ { // 2^40 - 2^20
t2.Square(&t2)
}
t1.Multiply(&t2, &t1) // 2^40 - 1
t1.Square(&t1) // 2^41 - 2
for i := 1; i < 10; i++ { // 2^50 - 2^10
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // 2^50 - 1
t1.Square(&t0) // 2^51 - 2
for i := 1; i < 50; i++ { // 2^100 - 2^50
t1.Square(&t1)
}
t1.Multiply(&t1, &t0) // 2^100 - 1
t2.Square(&t1) // 2^101 - 2
for i := 1; i < 100; i++ { // 2^200 - 2^100
t2.Square(&t2)
}
t1.Multiply(&t2, &t1) // 2^200 - 1
t1.Square(&t1) // 2^201 - 2
for i := 1; i < 50; i++ { // 2^250 - 2^50
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // 2^250 - 1
t0.Square(&t0) // 2^251 - 2
t0.Square(&t0) // 2^252 - 4
return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3)
}
// sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion.
var sqrtM1 = &Element{1718705420411056, 234908883556509,
2233514472574048, 2117202627021982, 765476049583133}
// SqrtRatio sets r to the non-negative square root of the ratio of u and v.
//
// If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio
// sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00,
// and returns r and 0.
func (r *Element) SqrtRatio(u, v *Element) (rr *Element, wasSquare int) {
var a, b Element
// r = (u * v3) * (u * v7)^((p-5)/8)
v2 := a.Square(v)
uv3 := b.Multiply(u, b.Multiply(v2, v))
uv7 := a.Multiply(uv3, a.Square(v2))
r.Multiply(uv3, r.Pow22523(uv7))
check := a.Multiply(v, a.Square(r)) // check = v * r^2
uNeg := b.Negate(u)
correctSignSqrt := check.Equal(u)
flippedSignSqrt := check.Equal(uNeg)
flippedSignSqrtI := check.Equal(uNeg.Multiply(uNeg, sqrtM1))
rPrime := b.Multiply(r, sqrtM1) // r_prime = SQRT_M1 * r
// r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
r.Select(rPrime, r, flippedSignSqrt|flippedSignSqrtI)
r.Absolute(r) // Choose the nonnegative square root.
return r, correctSignSqrt | flippedSignSqrt
}

13
vendor/filippo.io/edwards25519/field/fe_amd64.go generated vendored Normal file
View File

@ -0,0 +1,13 @@
// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
// +build amd64,gc,!purego
package field
// feMul sets out = a * b. It works like feMulGeneric.
//go:noescape
func feMul(out *Element, a *Element, b *Element)
// feSquare sets out = a * a. It works like feSquareGeneric.
//go:noescape
func feSquare(out *Element, a *Element)

378
vendor/filippo.io/edwards25519/field/fe_amd64.s generated vendored Normal file
View File

@ -0,0 +1,378 @@
// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
// +build amd64,gc,!purego
#include "textflag.h"
// func feMul(out *Element, a *Element, b *Element)
TEXT ·feMul(SB), NOSPLIT, $0-24
MOVQ a+8(FP), CX
MOVQ b+16(FP), BX
// r0 = a0×b0
MOVQ (CX), AX
MULQ (BX)
MOVQ AX, DI
MOVQ DX, SI
// r0 += 19×a1×b4
MOVQ 8(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(BX)
ADDQ AX, DI
ADCQ DX, SI
// r0 += 19×a2×b3
MOVQ 16(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 24(BX)
ADDQ AX, DI
ADCQ DX, SI
// r0 += 19×a3×b2
MOVQ 24(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 16(BX)
ADDQ AX, DI
ADCQ DX, SI
// r0 += 19×a4×b1
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 8(BX)
ADDQ AX, DI
ADCQ DX, SI
// r1 = a0×b1
MOVQ (CX), AX
MULQ 8(BX)
MOVQ AX, R9
MOVQ DX, R8
// r1 += a1×b0
MOVQ 8(CX), AX
MULQ (BX)
ADDQ AX, R9
ADCQ DX, R8
// r1 += 19×a2×b4
MOVQ 16(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(BX)
ADDQ AX, R9
ADCQ DX, R8
// r1 += 19×a3×b3
MOVQ 24(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 24(BX)
ADDQ AX, R9
ADCQ DX, R8
// r1 += 19×a4×b2
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 16(BX)
ADDQ AX, R9
ADCQ DX, R8
// r2 = a0×b2
MOVQ (CX), AX
MULQ 16(BX)
MOVQ AX, R11
MOVQ DX, R10
// r2 += a1×b1
MOVQ 8(CX), AX
MULQ 8(BX)
ADDQ AX, R11
ADCQ DX, R10
// r2 += a2×b0
MOVQ 16(CX), AX
MULQ (BX)
ADDQ AX, R11
ADCQ DX, R10
// r2 += 19×a3×b4
MOVQ 24(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(BX)
ADDQ AX, R11
ADCQ DX, R10
// r2 += 19×a4×b3
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 24(BX)
ADDQ AX, R11
ADCQ DX, R10
// r3 = a0×b3
MOVQ (CX), AX
MULQ 24(BX)
MOVQ AX, R13
MOVQ DX, R12
// r3 += a1×b2
MOVQ 8(CX), AX
MULQ 16(BX)
ADDQ AX, R13
ADCQ DX, R12
// r3 += a2×b1
MOVQ 16(CX), AX
MULQ 8(BX)
ADDQ AX, R13
ADCQ DX, R12
// r3 += a3×b0
MOVQ 24(CX), AX
MULQ (BX)
ADDQ AX, R13
ADCQ DX, R12
// r3 += 19×a4×b4
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(BX)
ADDQ AX, R13
ADCQ DX, R12
// r4 = a0×b4
MOVQ (CX), AX
MULQ 32(BX)
MOVQ AX, R15
MOVQ DX, R14
// r4 += a1×b3
MOVQ 8(CX), AX
MULQ 24(BX)
ADDQ AX, R15
ADCQ DX, R14
// r4 += a2×b2
MOVQ 16(CX), AX
MULQ 16(BX)
ADDQ AX, R15
ADCQ DX, R14
// r4 += a3×b1
MOVQ 24(CX), AX
MULQ 8(BX)
ADDQ AX, R15
ADCQ DX, R14
// r4 += a4×b0
MOVQ 32(CX), AX
MULQ (BX)
ADDQ AX, R15
ADCQ DX, R14
// First reduction chain
MOVQ $0x0007ffffffffffff, AX
SHLQ $0x0d, DI, SI
SHLQ $0x0d, R9, R8
SHLQ $0x0d, R11, R10
SHLQ $0x0d, R13, R12
SHLQ $0x0d, R15, R14
ANDQ AX, DI
IMUL3Q $0x13, R14, R14
ADDQ R14, DI
ANDQ AX, R9
ADDQ SI, R9
ANDQ AX, R11
ADDQ R8, R11
ANDQ AX, R13
ADDQ R10, R13
ANDQ AX, R15
ADDQ R12, R15
// Second reduction chain (carryPropagate)
MOVQ DI, SI
SHRQ $0x33, SI
MOVQ R9, R8
SHRQ $0x33, R8
MOVQ R11, R10
SHRQ $0x33, R10
MOVQ R13, R12
SHRQ $0x33, R12
MOVQ R15, R14
SHRQ $0x33, R14
ANDQ AX, DI
IMUL3Q $0x13, R14, R14
ADDQ R14, DI
ANDQ AX, R9
ADDQ SI, R9
ANDQ AX, R11
ADDQ R8, R11
ANDQ AX, R13
ADDQ R10, R13
ANDQ AX, R15
ADDQ R12, R15
// Store output
MOVQ out+0(FP), AX
MOVQ DI, (AX)
MOVQ R9, 8(AX)
MOVQ R11, 16(AX)
MOVQ R13, 24(AX)
MOVQ R15, 32(AX)
RET
// func feSquare(out *Element, a *Element)
TEXT ·feSquare(SB), NOSPLIT, $0-16
MOVQ a+8(FP), CX
// r0 = l0×l0
MOVQ (CX), AX
MULQ (CX)
MOVQ AX, SI
MOVQ DX, BX
// r0 += 38×l1×l4
MOVQ 8(CX), AX
IMUL3Q $0x26, AX, AX
MULQ 32(CX)
ADDQ AX, SI
ADCQ DX, BX
// r0 += 38×l2×l3
MOVQ 16(CX), AX
IMUL3Q $0x26, AX, AX
MULQ 24(CX)
ADDQ AX, SI
ADCQ DX, BX
// r1 = 2×l0×l1
MOVQ (CX), AX
SHLQ $0x01, AX
MULQ 8(CX)
MOVQ AX, R8
MOVQ DX, DI
// r1 += 38×l2×l4
MOVQ 16(CX), AX
IMUL3Q $0x26, AX, AX
MULQ 32(CX)
ADDQ AX, R8
ADCQ DX, DI
// r1 += 19×l3×l3
MOVQ 24(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 24(CX)
ADDQ AX, R8
ADCQ DX, DI
// r2 = 2×l0×l2
MOVQ (CX), AX
SHLQ $0x01, AX
MULQ 16(CX)
MOVQ AX, R10
MOVQ DX, R9
// r2 += l1×l1
MOVQ 8(CX), AX
MULQ 8(CX)
ADDQ AX, R10
ADCQ DX, R9
// r2 += 38×l3×l4
MOVQ 24(CX), AX
IMUL3Q $0x26, AX, AX
MULQ 32(CX)
ADDQ AX, R10
ADCQ DX, R9
// r3 = 2×l0×l3
MOVQ (CX), AX
SHLQ $0x01, AX
MULQ 24(CX)
MOVQ AX, R12
MOVQ DX, R11
// r3 += 2×l1×l2
MOVQ 8(CX), AX
IMUL3Q $0x02, AX, AX
MULQ 16(CX)
ADDQ AX, R12
ADCQ DX, R11
// r3 += 19×l4×l4
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(CX)
ADDQ AX, R12
ADCQ DX, R11
// r4 = 2×l0×l4
MOVQ (CX), AX
SHLQ $0x01, AX
MULQ 32(CX)
MOVQ AX, R14
MOVQ DX, R13
// r4 += 2×l1×l3
MOVQ 8(CX), AX
IMUL3Q $0x02, AX, AX
MULQ 24(CX)
ADDQ AX, R14
ADCQ DX, R13
// r4 += l2×l2
MOVQ 16(CX), AX
MULQ 16(CX)
ADDQ AX, R14
ADCQ DX, R13
// First reduction chain
MOVQ $0x0007ffffffffffff, AX
SHLQ $0x0d, SI, BX
SHLQ $0x0d, R8, DI
SHLQ $0x0d, R10, R9
SHLQ $0x0d, R12, R11
SHLQ $0x0d, R14, R13
ANDQ AX, SI
IMUL3Q $0x13, R13, R13
ADDQ R13, SI
ANDQ AX, R8
ADDQ BX, R8
ANDQ AX, R10
ADDQ DI, R10
ANDQ AX, R12
ADDQ R9, R12
ANDQ AX, R14
ADDQ R11, R14
// Second reduction chain (carryPropagate)
MOVQ SI, BX
SHRQ $0x33, BX
MOVQ R8, DI
SHRQ $0x33, DI
MOVQ R10, R9
SHRQ $0x33, R9
MOVQ R12, R11
SHRQ $0x33, R11
MOVQ R14, R13
SHRQ $0x33, R13
ANDQ AX, SI
IMUL3Q $0x13, R13, R13
ADDQ R13, SI
ANDQ AX, R8
ADDQ BX, R8
ANDQ AX, R10
ADDQ DI, R10
ANDQ AX, R12
ADDQ R9, R12
ANDQ AX, R14
ADDQ R11, R14
// Store output
MOVQ out+0(FP), AX
MOVQ SI, (AX)
MOVQ R8, 8(AX)
MOVQ R10, 16(AX)
MOVQ R12, 24(AX)
MOVQ R14, 32(AX)
RET

12
vendor/filippo.io/edwards25519/field/fe_amd64_noasm.go generated vendored Normal file
View File

@ -0,0 +1,12 @@
// Copyright (c) 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !amd64 || !gc || purego
// +build !amd64 !gc purego
package field
func feMul(v, x, y *Element) { feMulGeneric(v, x, y) }
func feSquare(v, x *Element) { feSquareGeneric(v, x) }

16
vendor/filippo.io/edwards25519/field/fe_arm64.go generated vendored Normal file
View File

@ -0,0 +1,16 @@
// Copyright (c) 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build arm64 && gc && !purego
// +build arm64,gc,!purego
package field
//go:noescape
func carryPropagate(v *Element)
func (v *Element) carryPropagate() *Element {
carryPropagate(v)
return v
}

42
vendor/filippo.io/edwards25519/field/fe_arm64.s generated vendored Normal file
View File

@ -0,0 +1,42 @@
// Copyright (c) 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build arm64,gc,!purego
#include "textflag.h"
// carryPropagate works exactly like carryPropagateGeneric and uses the
// same AND, ADD, and LSR+MADD instructions emitted by the compiler, but
// avoids loading R0-R4 twice and uses LDP and STP.
//
// See https://golang.org/issues/43145 for the main compiler issue.
//
// func carryPropagate(v *Element)
TEXT ·carryPropagate(SB),NOFRAME|NOSPLIT,$0-8
MOVD v+0(FP), R20
LDP 0(R20), (R0, R1)
LDP 16(R20), (R2, R3)
MOVD 32(R20), R4
AND $0x7ffffffffffff, R0, R10
AND $0x7ffffffffffff, R1, R11
AND $0x7ffffffffffff, R2, R12
AND $0x7ffffffffffff, R3, R13
AND $0x7ffffffffffff, R4, R14
ADD R0>>51, R11, R11
ADD R1>>51, R12, R12
ADD R2>>51, R13, R13
ADD R3>>51, R14, R14
// R4>>51 * 19 + R10 -> R10
LSR $51, R4, R21
MOVD $19, R22
MADD R22, R10, R21, R10
STP (R10, R11), 0(R20)
STP (R12, R13), 16(R20)
MOVD R14, 32(R20)
RET

12
vendor/filippo.io/edwards25519/field/fe_arm64_noasm.go generated vendored Normal file
View File

@ -0,0 +1,12 @@
// Copyright (c) 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !arm64 || !gc || purego
// +build !arm64 !gc purego
package field
func (v *Element) carryPropagate() *Element {
return v.carryPropagateGeneric()
}

264
vendor/filippo.io/edwards25519/field/fe_generic.go generated vendored Normal file
View File

@ -0,0 +1,264 @@
// Copyright (c) 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package field
import "math/bits"
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
// bits.Mul64 and bits.Add64 intrinsics.
type uint128 struct {
lo, hi uint64
}
// mul64 returns a * b.
func mul64(a, b uint64) uint128 {
hi, lo := bits.Mul64(a, b)
return uint128{lo, hi}
}
// addMul64 returns v + a * b.
func addMul64(v uint128, a, b uint64) uint128 {
hi, lo := bits.Mul64(a, b)
lo, c := bits.Add64(lo, v.lo, 0)
hi, _ = bits.Add64(hi, v.hi, c)
return uint128{lo, hi}
}
// shiftRightBy51 returns a >> 51. a is assumed to be at most 115 bits.
func shiftRightBy51(a uint128) uint64 {
return (a.hi << (64 - 51)) | (a.lo >> 51)
}
func feMulGeneric(v, a, b *Element) {
a0 := a.l0
a1 := a.l1
a2 := a.l2
a3 := a.l3
a4 := a.l4
b0 := b.l0
b1 := b.l1
b2 := b.l2
b3 := b.l3
b4 := b.l4
// Limb multiplication works like pen-and-paper columnar multiplication, but
// with 51-bit limbs instead of digits.
//
// a4 a3 a2 a1 a0 x
// b4 b3 b2 b1 b0 =
// ------------------------
// a4b0 a3b0 a2b0 a1b0 a0b0 +
// a4b1 a3b1 a2b1 a1b1 a0b1 +
// a4b2 a3b2 a2b2 a1b2 a0b2 +
// a4b3 a3b3 a2b3 a1b3 a0b3 +
// a4b4 a3b4 a2b4 a1b4 a0b4 =
// ----------------------------------------------
// r8 r7 r6 r5 r4 r3 r2 r1 r0
//
// We can then use the reduction identity (a * 2²⁵⁵ + b = a * 19 + b) to
// reduce the limbs that would overflow 255 bits. r5 * 2²⁵⁵ becomes 19 * r5,
// r6 * 2³⁰⁶ becomes 19 * r6 * 2⁵¹, etc.
//
// Reduction can be carried out simultaneously to multiplication. For
// example, we do not compute r5: whenever the result of a multiplication
// belongs to r5, like a1b4, we multiply it by 19 and add the result to r0.
//
// a4b0 a3b0 a2b0 a1b0 a0b0 +
// a3b1 a2b1 a1b1 a0b1 19×a4b1 +
// a2b2 a1b2 a0b2 19×a4b2 19×a3b2 +
// a1b3 a0b3 19×a4b3 19×a3b3 19×a2b3 +
// a0b4 19×a4b4 19×a3b4 19×a2b4 19×a1b4 =
// --------------------------------------
// r4 r3 r2 r1 r0
//
// Finally we add up the columns into wide, overlapping limbs.
a1_19 := a1 * 19
a2_19 := a2 * 19
a3_19 := a3 * 19
a4_19 := a4 * 19
// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
r0 := mul64(a0, b0)
r0 = addMul64(r0, a1_19, b4)
r0 = addMul64(r0, a2_19, b3)
r0 = addMul64(r0, a3_19, b2)
r0 = addMul64(r0, a4_19, b1)
// r1 = a0×b1 + a1×b0 + 19×(a2×b4 + a3×b3 + a4×b2)
r1 := mul64(a0, b1)
r1 = addMul64(r1, a1, b0)
r1 = addMul64(r1, a2_19, b4)
r1 = addMul64(r1, a3_19, b3)
r1 = addMul64(r1, a4_19, b2)
// r2 = a0×b2 + a1×b1 + a2×b0 + 19×(a3×b4 + a4×b3)
r2 := mul64(a0, b2)
r2 = addMul64(r2, a1, b1)
r2 = addMul64(r2, a2, b0)
r2 = addMul64(r2, a3_19, b4)
r2 = addMul64(r2, a4_19, b3)
// r3 = a0×b3 + a1×b2 + a2×b1 + a3×b0 + 19×a4×b4
r3 := mul64(a0, b3)
r3 = addMul64(r3, a1, b2)
r3 = addMul64(r3, a2, b1)
r3 = addMul64(r3, a3, b0)
r3 = addMul64(r3, a4_19, b4)
// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
r4 := mul64(a0, b4)
r4 = addMul64(r4, a1, b3)
r4 = addMul64(r4, a2, b2)
r4 = addMul64(r4, a3, b1)
r4 = addMul64(r4, a4, b0)
// After the multiplication, we need to reduce (carry) the five coefficients
// to obtain a result with limbs that are at most slightly larger than 2⁵¹,
// to respect the Element invariant.
//
// Overall, the reduction works the same as carryPropagate, except with
// wider inputs: we take the carry for each coefficient by shifting it right
// by 51, and add it to the limb above it. The top carry is multiplied by 19
// according to the reduction identity and added to the lowest limb.
//
// The largest coefficient (r0) will be at most 111 bits, which guarantees
// that all carries are at most 111 - 51 = 60 bits, which fits in a uint64.
//
// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
// r0 < 2⁵²×2⁵² + 19×(2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵²)
// r0 < (1 + 19 × 4) × 2⁵² × 2⁵²
// r0 < 2⁷ × 2⁵² × 2⁵²
// r0 < 2¹¹¹
//
// Moreover, the top coefficient (r4) is at most 107 bits, so c4 is at most
// 56 bits, and c4 * 19 is at most 61 bits, which again fits in a uint64 and
// allows us to easily apply the reduction identity.
//
// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
// r4 < 5 × 2⁵² × 2⁵²
// r4 < 2¹⁰⁷
//
c0 := shiftRightBy51(r0)
c1 := shiftRightBy51(r1)
c2 := shiftRightBy51(r2)
c3 := shiftRightBy51(r3)
c4 := shiftRightBy51(r4)
rr0 := r0.lo&maskLow51Bits + c4*19
rr1 := r1.lo&maskLow51Bits + c0
rr2 := r2.lo&maskLow51Bits + c1
rr3 := r3.lo&maskLow51Bits + c2
rr4 := r4.lo&maskLow51Bits + c3
// Now all coefficients fit into 64-bit registers but are still too large to
// be passed around as a Element. We therefore do one last carry chain,
// where the carries will be small enough to fit in the wiggle room above 2⁵¹.
*v = Element{rr0, rr1, rr2, rr3, rr4}
v.carryPropagate()
}
func feSquareGeneric(v, a *Element) {
l0 := a.l0
l1 := a.l1
l2 := a.l2
l3 := a.l3
l4 := a.l4
// Squaring works precisely like multiplication above, but thanks to its
// symmetry we get to group a few terms together.
//
// l4 l3 l2 l1 l0 x
// l4 l3 l2 l1 l0 =
// ------------------------
// l4l0 l3l0 l2l0 l1l0 l0l0 +
// l4l1 l3l1 l2l1 l1l1 l0l1 +
// l4l2 l3l2 l2l2 l1l2 l0l2 +
// l4l3 l3l3 l2l3 l1l3 l0l3 +
// l4l4 l3l4 l2l4 l1l4 l0l4 =
// ----------------------------------------------
// r8 r7 r6 r5 r4 r3 r2 r1 r0
//
// l4l0 l3l0 l2l0 l1l0 l0l0 +
// l3l1 l2l1 l1l1 l0l1 19×l4l1 +
// l2l2 l1l2 l0l2 19×l4l2 19×l3l2 +
// l1l3 l0l3 19×l4l3 19×l3l3 19×l2l3 +
// l0l4 19×l4l4 19×l3l4 19×l2l4 19×l1l4 =
// --------------------------------------
// r4 r3 r2 r1 r0
//
// With precomputed 2×, 19×, and 2×19× terms, we can compute each limb with
// only three Mul64 and four Add64, instead of five and eight.
l0_2 := l0 * 2
l1_2 := l1 * 2
l1_38 := l1 * 38
l2_38 := l2 * 38
l3_38 := l3 * 38
l3_19 := l3 * 19
l4_19 := l4 * 19
// r0 = l0×l0 + 19×(l1×l4 + l2×l3 + l3×l2 + l4×l1) = l0×l0 + 19×2×(l1×l4 + l2×l3)
r0 := mul64(l0, l0)
r0 = addMul64(r0, l1_38, l4)
r0 = addMul64(r0, l2_38, l3)
// r1 = l0×l1 + l1×l0 + 19×(l2×l4 + l3×l3 + l4×l2) = 2×l0×l1 + 19×2×l2×l4 + 19×l3×l3
r1 := mul64(l0_2, l1)
r1 = addMul64(r1, l2_38, l4)
r1 = addMul64(r1, l3_19, l3)
// r2 = l0×l2 + l1×l1 + l2×l0 + 19×(l3×l4 + l4×l3) = 2×l0×l2 + l1×l1 + 19×2×l3×l4
r2 := mul64(l0_2, l2)
r2 = addMul64(r2, l1, l1)
r2 = addMul64(r2, l3_38, l4)
// r3 = l0×l3 + l1×l2 + l2×l1 + l3×l0 + 19×l4×l4 = 2×l0×l3 + 2×l1×l2 + 19×l4×l4
r3 := mul64(l0_2, l3)
r3 = addMul64(r3, l1_2, l2)
r3 = addMul64(r3, l4_19, l4)
// r4 = l0×l4 + l1×l3 + l2×l2 + l3×l1 + l4×l0 = 2×l0×l4 + 2×l1×l3 + l2×l2
r4 := mul64(l0_2, l4)
r4 = addMul64(r4, l1_2, l3)
r4 = addMul64(r4, l2, l2)
c0 := shiftRightBy51(r0)
c1 := shiftRightBy51(r1)
c2 := shiftRightBy51(r2)
c3 := shiftRightBy51(r3)
c4 := shiftRightBy51(r4)
rr0 := r0.lo&maskLow51Bits + c4*19
rr1 := r1.lo&maskLow51Bits + c0
rr2 := r2.lo&maskLow51Bits + c1
rr3 := r3.lo&maskLow51Bits + c2
rr4 := r4.lo&maskLow51Bits + c3
*v = Element{rr0, rr1, rr2, rr3, rr4}
v.carryPropagate()
}
// carryPropagate brings the limbs below 52 bits by applying the reduction
// identity (a * 2²⁵⁵ + b = a * 19 + b) to the l4 carry.
func (v *Element) carryPropagateGeneric() *Element {
c0 := v.l0 >> 51
c1 := v.l1 >> 51
c2 := v.l2 >> 51
c3 := v.l3 >> 51
c4 := v.l4 >> 51
v.l0 = v.l0&maskLow51Bits + c4*19
v.l1 = v.l1&maskLow51Bits + c0
v.l2 = v.l2&maskLow51Bits + c1
v.l3 = v.l3&maskLow51Bits + c2
v.l4 = v.l4&maskLow51Bits + c3
return v
}