#include "config.h" /* * Copyright (c) 2020 Samsung Electronics Co., Ltd. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "vector_vdrawhelper.h" #include #include #include #include #include #include static RenderFuncTable RenderTable; void VTextureData::setClip(const VRect &clip) { left = clip.left(); top = clip.top(); right = std::min(clip.right(), int(width())) - 1; bottom = std::min(clip.bottom(), int(height())) - 1; } class VGradientCache { public: struct CacheInfo : public VColorTable { inline CacheInfo(VGradientStops s) : stops(std::move(s)) {} VGradientStops stops; }; using VCacheData = std::shared_ptr; using VCacheKey = int64_t; using VGradientColorTableHash = std::unordered_multimap; bool generateGradientColorTable(const VGradientStops &stops, float alpha, uint32_t *colorTable, int size); VCacheData getBuffer(const VGradient &gradient) { VCacheKey hash_val = 0; VCacheData info; const VGradientStops &stops = gradient.mStops; for (uint i = 0; i < stops.size() && i <= 2; i++) hash_val += VCacheKey(stops[i].second.premulARGB() * gradient.alpha()); { std::lock_guard guard(mMutex); size_t count = mCache.count(hash_val); if (!count) { // key is not present in the hash info = addCacheElement(hash_val, gradient); } else if (count == 1) { auto search = mCache.find(hash_val); if (search->second->stops == stops) { info = search->second; } else { // didn't find an exact match info = addCacheElement(hash_val, gradient); } } else { // we have a multiple data with same key auto range = mCache.equal_range(hash_val); for (auto it = range.first; it != range.second; ++it) { if (it->second->stops == stops) { info = it->second; break; } } if (!info) { // didn't find an exact match info = addCacheElement(hash_val, gradient); } } } return info; } static VGradientCache &instance() { static VGradientCache CACHE; return CACHE; } protected: uint maxCacheSize() const { return 60; } VCacheData addCacheElement(VCacheKey hash_val, const VGradient &gradient) { if (mCache.size() == maxCacheSize()) { uint count = maxCacheSize() / 10; while (count--) { mCache.erase(mCache.begin()); } } auto cache_entry = std::make_shared(gradient.mStops); cache_entry->alpha = generateGradientColorTable( gradient.mStops, gradient.alpha(), cache_entry->buffer32, VGradient::colorTableSize); mCache.insert(std::make_pair(hash_val, cache_entry)); return cache_entry; } private: VGradientCache() = default; VGradientColorTableHash mCache; std::mutex mMutex; }; bool VGradientCache::generateGradientColorTable(const VGradientStops &stops, float opacity, uint32_t *colorTable, int size) { int dist, idist, pos = 0; size_t i; bool alpha = false; size_t stopCount = stops.size(); const VGradientStop *curr, *next, *start; uint32_t curColor, nextColor; float delta, t, incr, fpos; if (!vCompare(opacity, 1.0f)) alpha = true; start = stops.data(); curr = start; if (!curr->second.isOpaque()) alpha = true; curColor = curr->second.premulARGB(opacity); incr = 1.0f / (float)size; fpos = 1.5f * incr; colorTable[pos++] = curColor; while (fpos <= curr->first) { colorTable[pos] = colorTable[pos - 1]; pos++; fpos += incr; } for (i = 0; i < stopCount - 1; ++i) { curr = (start + i); next = (start + i + 1); delta = 1 / (next->first - curr->first); if (!next->second.isOpaque()) alpha = true; nextColor = next->second.premulARGB(opacity); while (fpos < next->first && pos < size) { t = (fpos - curr->first) * delta; dist = (int)(255 * t); idist = 255 - dist; colorTable[pos] = interpolate_pixel(curColor, idist, nextColor, dist); ++pos; fpos += incr; } curColor = nextColor; } for (; pos < size; ++pos) colorTable[pos] = curColor; // Make sure the last color stop is represented at the end of the table colorTable[size - 1] = curColor; return alpha; } void VRasterBuffer::clear() { memset(mBuffer, 0, mHeight * mBytesPerLine); } VBitmap::Format VRasterBuffer::prepare(const VBitmap *image) { mBuffer = image->data(); mWidth = image->width(); mHeight = image->height(); mBytesPerPixel = 4; mBytesPerLine = image->stride(); mFormat = image->format(); return mFormat; } void VSpanData::init(VRasterBuffer *image) { mRasterBuffer = image; setDrawRegion(VRect(0, 0, int(image->width()), int(image->height()))); mType = VSpanData::Type::None; mBlendFunc = nullptr; mUnclippedBlendFunc = nullptr; } /* * Gradient Draw routines * */ #define FIXPT_BITS 8 #define FIXPT_SIZE (1 << FIXPT_BITS) static inline void getLinearGradientValues(LinearGradientValues *v, const VSpanData * data) { const VGradientData *grad = &data->mGradient; v->dx = grad->linear.x2 - grad->linear.x1; v->dy = grad->linear.y2 - grad->linear.y1; v->l = v->dx * v->dx + v->dy * v->dy; v->off = 0; if (v->l != 0) { v->dx /= v->l; v->dy /= v->l; v->off = -v->dx * grad->linear.x1 - v->dy * grad->linear.y1; } } static inline void getRadialGradientValues(RadialGradientValues *v, const VSpanData * data) { const VGradientData &gradient = data->mGradient; v->dx = gradient.radial.cx - gradient.radial.fx; v->dy = gradient.radial.cy - gradient.radial.fy; v->dr = gradient.radial.cradius - gradient.radial.fradius; v->sqrfr = gradient.radial.fradius * gradient.radial.fradius; v->a = v->dr * v->dr - v->dx * v->dx - v->dy * v->dy; v->inv2a = 1 / (2 * v->a); v->extended = !vIsZero(gradient.radial.fradius) || v->a <= 0; } static inline int gradientClamp(const VGradientData *grad, int ipos) { int limit; if (grad->mSpread == VGradient::Spread::Repeat) { ipos = ipos % VGradient::colorTableSize; ipos = ipos < 0 ? VGradient::colorTableSize + ipos : ipos; } else if (grad->mSpread == VGradient::Spread::Reflect) { limit = VGradient::colorTableSize * 2; ipos = ipos % limit; ipos = ipos < 0 ? limit + ipos : ipos; ipos = ipos >= VGradient::colorTableSize ? limit - 1 - ipos : ipos; } else { if (ipos < 0) ipos = 0; else if (ipos >= VGradient::colorTableSize) ipos = VGradient::colorTableSize - 1; } return ipos; } static uint32_t gradientPixelFixed(const VGradientData *grad, int fixed_pos) { int ipos = (fixed_pos + (FIXPT_SIZE / 2)) >> FIXPT_BITS; return grad->mColorTable[gradientClamp(grad, ipos)]; } static inline uint32_t gradientPixel(const VGradientData *grad, float pos) { int ipos = (int)(pos * (VGradient::colorTableSize - 1) + (float)(0.5)); return grad->mColorTable[gradientClamp(grad, ipos)]; } void fetch_linear_gradient(uint32_t *buffer, const Operator *op, const VSpanData *data, int y, int x, int length) { float t, inc; const VGradientData *gradient = &data->mGradient; bool affine = true; float rx = 0, ry = 0; if (op->linear.l == 0) { t = inc = 0; } else { rx = data->m21 * (y + float(0.5)) + data->m11 * (x + float(0.5)) + data->dx; ry = data->m22 * (y + float(0.5)) + data->m12 * (x + float(0.5)) + data->dy; t = op->linear.dx * rx + op->linear.dy * ry + op->linear.off; inc = op->linear.dx * data->m11 + op->linear.dy * data->m12; affine = !data->m13 && !data->m23; if (affine) { t *= (VGradient::colorTableSize - 1); inc *= (VGradient::colorTableSize - 1); } } const uint32_t *end = buffer + length; if (affine) { if (inc > float(-1e-5) && inc < float(1e-5)) { memfill32(buffer, gradientPixelFixed(gradient, int(t * FIXPT_SIZE)), length); } else { if (t + inc * length < float(INT_MAX >> (FIXPT_BITS + 1)) && t + inc * length > float(INT_MIN >> (FIXPT_BITS + 1))) { // we can use fixed point math int t_fixed = int(t * FIXPT_SIZE); int inc_fixed = int(inc * FIXPT_SIZE); while (buffer < end) { *buffer = gradientPixelFixed(gradient, t_fixed); t_fixed += inc_fixed; ++buffer; } } else { // we have to fall back to float math while (buffer < end) { *buffer = gradientPixel(gradient, t / VGradient::colorTableSize); t += inc; ++buffer; } } } } else { // fall back to float math here as well float rw = data->m23 * (y + float(0.5)) + data->m13 * (x + float(0.5)) + data->m33; while (buffer < end) { float xt = rx / rw; float yt = ry / rw; t = (op->linear.dx * xt + op->linear.dy * yt) + op->linear.off; *buffer = gradientPixel(gradient, t); rx += data->m11; ry += data->m12; rw += data->m13; if (!rw) { rw += data->m13; } ++buffer; } } } static inline float radialDeterminant(float a, float b, float c) { return (b * b) - (4 * a * c); } static void fetch(uint32_t *buffer, uint32_t *end, const Operator *op, const VSpanData *data, float det, float delta_det, float delta_delta_det, float b, float delta_b) { if (op->radial.extended) { while (buffer < end) { uint32_t result = 0; if (det >= 0) { float w = std::sqrt(det) - b; if (data->mGradient.radial.fradius + op->radial.dr * w >= 0) result = gradientPixel(&data->mGradient, w); } *buffer = result; det += delta_det; delta_det += delta_delta_det; b += delta_b; ++buffer; } } else { while (buffer < end) { *buffer++ = gradientPixel(&data->mGradient, std::sqrt(det) - b); det += delta_det; delta_det += delta_delta_det; b += delta_b; } } } void fetch_radial_gradient(uint32_t *buffer, const Operator *op, const VSpanData *data, int y, int x, int length) { // avoid division by zero if (vIsZero(op->radial.a)) { memfill32(buffer, 0, length); return; } float rx = data->m21 * (y + float(0.5)) + data->dx + data->m11 * (x + float(0.5)); float ry = data->m22 * (y + float(0.5)) + data->dy + data->m12 * (x + float(0.5)); bool affine = !data->m13 && !data->m23; uint32_t *end = buffer + length; if (affine) { rx -= data->mGradient.radial.fx; ry -= data->mGradient.radial.fy; float inv_a = 1 / float(2 * op->radial.a); const float delta_rx = data->m11; const float delta_ry = data->m12; float b = 2 * (op->radial.dr * data->mGradient.radial.fradius + rx * op->radial.dx + ry * op->radial.dy); float delta_b = 2 * (delta_rx * op->radial.dx + delta_ry * op->radial.dy); const float b_delta_b = 2 * b * delta_b; const float delta_b_delta_b = 2 * delta_b * delta_b; const float bb = b * b; const float delta_bb = delta_b * delta_b; b *= inv_a; delta_b *= inv_a; const float rxrxryry = rx * rx + ry * ry; const float delta_rxrxryry = delta_rx * delta_rx + delta_ry * delta_ry; const float rx_plus_ry = 2 * (rx * delta_rx + ry * delta_ry); const float delta_rx_plus_ry = 2 * delta_rxrxryry; inv_a *= inv_a; float det = (bb - 4 * op->radial.a * (op->radial.sqrfr - rxrxryry)) * inv_a; float delta_det = (b_delta_b + delta_bb + 4 * op->radial.a * (rx_plus_ry + delta_rxrxryry)) * inv_a; const float delta_delta_det = (delta_b_delta_b + 4 * op->radial.a * delta_rx_plus_ry) * inv_a; fetch(buffer, end, op, data, det, delta_det, delta_delta_det, b, delta_b); } else { float rw = data->m23 * (y + float(0.5)) + data->m33 + data->m13 * (x + float(0.5)); while (buffer < end) { if (rw == 0) { *buffer = 0; } else { float invRw = 1 / rw; float gx = rx * invRw - data->mGradient.radial.fx; float gy = ry * invRw - data->mGradient.radial.fy; float b = 2 * (op->radial.dr * data->mGradient.radial.fradius + gx * op->radial.dx + gy * op->radial.dy); float det = radialDeterminant( op->radial.a, b, op->radial.sqrfr - (gx * gx + gy * gy)); uint32_t result = 0; if (det >= 0) { float detSqrt = std::sqrt(det); float s0 = (-b - detSqrt) * op->radial.inv2a; float s1 = (-b + detSqrt) * op->radial.inv2a; float s = vMax(s0, s1); if (data->mGradient.radial.fradius + op->radial.dr * s >= 0) result = gradientPixel(&data->mGradient, s); } *buffer = result; } rx += data->m11; ry += data->m12; rw += data->m13; ++buffer; } } } static inline Operator getOperator(const VSpanData *data) { Operator op; bool solidSource = false; switch (data->mType) { case VSpanData::Type::Solid: solidSource = (vAlpha(data->mSolid) == 255); op.srcFetch = nullptr; break; case VSpanData::Type::LinearGradient: solidSource = false; getLinearGradientValues(&op.linear, data); op.srcFetch = &fetch_linear_gradient; break; case VSpanData::Type::RadialGradient: solidSource = false; getRadialGradientValues(&op.radial, data); op.srcFetch = &fetch_radial_gradient; break; default: op.srcFetch = nullptr; break; } op.mode = data->mBlendMode; if (op.mode == BlendMode::SrcOver && solidSource) op.mode = BlendMode::Src; op.funcSolid = RenderTable.color(op.mode); op.func = RenderTable.src(op.mode); return op; } static void blend_color(size_t size, const VRle::Span *array, void *userData) { VSpanData *data = (VSpanData *)(userData); Operator op = getOperator(data); const uint color = data->mSolid; for (size_t i = 0 ; i < size; ++i) { const auto &span = array[i]; op.funcSolid(data->buffer(span.x, span.y), span.len, color, span.coverage); } } // Signature of Process Object // void Pocess(uint* scratchBuffer, size_t x, size_t y, uchar cov) template static inline void process_in_chunk(const VRle::Span *array, size_t size, Process process) { std::array buf; for (size_t i = 0; i < size; i++) { const auto &span = array[i]; size_t len = span.len; auto x = span.x; while (len) { auto l = std::min(len, buf.size()); process(buf.data(), x, span.y, l, span.coverage); x += l; len -= l; } } } static void blend_gradient(size_t size, const VRle::Span *array, void *userData) { VSpanData *data = (VSpanData *)(userData); Operator op = getOperator(data); if (!op.srcFetch) return; process_in_chunk( array, size, [&](uint *scratch, size_t x, size_t y, size_t len, uchar cov) { op.srcFetch(scratch, &op, data, (int)y, (int)x, (int)len); op.func(data->buffer((int)x, (int)y), (int)len, scratch, cov); }); } template constexpr const T &clamp(const T &v, const T &lo, const T &hi) { return v < lo ? lo : hi < v ? hi : v; } static constexpr inline uchar alpha_mul(uchar a, uchar b) { return ((a * b) >> 8); } static void blend_image_xform(size_t size, const VRle::Span *array, void *userData) { const auto data = reinterpret_cast(userData); const auto &src = data->texture(); if (src.format() != VBitmap::Format::ARGB32_Premultiplied && src.format() != VBitmap::Format::ARGB32) { //@TODO other formats not yet handled. return; } Operator op = getOperator(data); process_in_chunk( array, size, [&](uint *scratch, size_t x, size_t y, size_t len, uchar cov) { const auto coverage = (cov * src.alpha()) >> 8; const float xfactor = y * data->m21 + data->dx + data->m11; const float yfactor = y * data->m22 + data->dy + data->m12; for (size_t i = 0; i < len; i++) { const float fx = (x + i) * data->m11 + xfactor; const float fy = (x + i) * data->m12 + yfactor; const int px = clamp(int(fx), src.left, src.right); const int py = clamp(int(fy), src.top, src.bottom); scratch[i] = src.pixel(px, py); } op.func(data->buffer((int)x, (int)y), (int)len, scratch, coverage); }); } static void blend_image(size_t size, const VRle::Span *array, void *userData) { const auto data = reinterpret_cast(userData); const auto &src = data->texture(); if (src.format() != VBitmap::Format::ARGB32_Premultiplied && src.format() != VBitmap::Format::ARGB32) { //@TODO other formats not yet handled. return; } Operator op = getOperator(data); for (size_t i = 0; i < size; i++) { const auto &span = array[i]; int x = span.x; int length = span.len; int sx = x + int(data->dx); int sy = span.y + int(data->dy); // notyhing to copy. if (sy < 0 || sy >= int(src.height()) || sx >= int(src.width()) || (sx + length) <= 0) continue; // intersecting left edge of image if (sx < 0) { x -= sx; length += sx; sx = 0; } // intersecting right edge of image if (sx + length > int(src.width())) length = (int)src.width() - sx; op.func(data->buffer(x, span.y), length, src.pixelRef(sx, sy), alpha_mul(span.coverage, src.alpha())); } } void VSpanData::setup(const VBrush &brush, BlendMode /*mode*/, int /*alpha*/) { transformType = VMatrix::MatrixType::None; switch (brush.type()) { case VBrush::Type::NoBrush: mType = VSpanData::Type::None; break; case VBrush::Type::Solid: mType = VSpanData::Type::Solid; mSolid = brush.mColor.premulARGB(); break; case VBrush::Type::LinearGradient: { mType = VSpanData::Type::LinearGradient; mColorTable = VGradientCache::instance().getBuffer(*brush.mGradient); mGradient.mColorTable = mColorTable->buffer32; mGradient.mColorTableAlpha = mColorTable->alpha; mGradient.linear.x1 = brush.mGradient->linear.x1; mGradient.linear.y1 = brush.mGradient->linear.y1; mGradient.linear.x2 = brush.mGradient->linear.x2; mGradient.linear.y2 = brush.mGradient->linear.y2; mGradient.mSpread = brush.mGradient->mSpread; setupMatrix(brush.mGradient->mMatrix); break; } case VBrush::Type::RadialGradient: { mType = VSpanData::Type::RadialGradient; mColorTable = VGradientCache::instance().getBuffer(*brush.mGradient); mGradient.mColorTable = mColorTable->buffer32; mGradient.mColorTableAlpha = mColorTable->alpha; mGradient.radial.cx = brush.mGradient->radial.cx; mGradient.radial.cy = brush.mGradient->radial.cy; mGradient.radial.fx = brush.mGradient->radial.fx; mGradient.radial.fy = brush.mGradient->radial.fy; mGradient.radial.cradius = brush.mGradient->radial.cradius; mGradient.radial.fradius = brush.mGradient->radial.fradius; mGradient.mSpread = brush.mGradient->mSpread; setupMatrix(brush.mGradient->mMatrix); break; } case VBrush::Type::Texture: { mType = VSpanData::Type::Texture; initTexture(&brush.mTexture->mBitmap, brush.mTexture->mAlpha, brush.mTexture->mBitmap.rect()); setupMatrix(brush.mTexture->mMatrix); break; } default: break; } updateSpanFunc(); } void VSpanData::setupMatrix(const VMatrix &matrix) { VMatrix inv = matrix.inverted(); m11 = inv.m11; m12 = inv.m12; m13 = inv.m13; m21 = inv.m21; m22 = inv.m22; m23 = inv.m23; m33 = inv.m33; dx = inv.mtx; dy = inv.mty; transformType = inv.type(); const bool affine = inv.isAffine(); const float f1 = m11 * m11 + m21 * m21; const float f2 = m12 * m12 + m22 * m22; fast_matrix = affine && f1 < 1e4 && f2 < 1e4 && f1 > (1.0 / 65536) && f2 > (1.0 / 65536) && fabs(dx) < 1e4 && fabs(dy) < 1e4; } void VSpanData::initTexture(const VBitmap *bitmap, int alpha, const VRect &sourceRect) { mType = VSpanData::Type::Texture; mTexture.prepare(bitmap); mTexture.setClip(sourceRect); mTexture.setAlpha(alpha); updateSpanFunc(); } void VSpanData::updateSpanFunc() { switch (mType) { case VSpanData::Type::None: mUnclippedBlendFunc = nullptr; break; case VSpanData::Type::Solid: mUnclippedBlendFunc = &blend_color; break; case VSpanData::Type::LinearGradient: case VSpanData::Type::RadialGradient: { mUnclippedBlendFunc = &blend_gradient; break; } case VSpanData::Type::Texture: { //@TODO update proper image function. if (transformType <= VMatrix::MatrixType::Translate) { mUnclippedBlendFunc = &blend_image; } else { mUnclippedBlendFunc = &blend_image_xform; } break; } } } #if !defined(__SSE2__) && !defined(USE_ARM_NEON) void memfill32(uint32_t *dest, uint32_t value, int length) { // let compiler do the auto vectorization. for (int i = 0 ; i < length; i++) { *dest++ = value; } } #endif