// Copyright 2015 Rick Beton. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package period import ( "fmt" "time" ) const daysPerYearE4 int64 = 3652425 // 365.2425 days by the Gregorian rule const daysPerMonthE4 int64 = 304375 // 30.4375 days per month const daysPerMonthE6 int64 = 30436875 // 30.436875 days per month const oneE4 int64 = 10000 const oneE5 int64 = 100000 const oneE6 int64 = 1000000 const oneE7 int64 = 10000000 const hundredMs = 100 * time.Millisecond // reminder: int64 overflow is after 9,223,372,036,854,775,807 (math.MaxInt64) // Period holds a period of time and provides conversion to/from ISO-8601 representations. // Therefore there are six fields: years, months, days, hours, minutes, and seconds. // // In the ISO representation, decimal fractions are supported, although only the last non-zero // component is allowed to have a fraction according to the Standard. For example "P2.5Y" // is 2.5 years. // // However, in this implementation, the precision is limited to one decimal place only, by // means of integers with fixed point arithmetic. (This avoids using float32 in the struct, // so there are no problems testing equality using ==.) // // The implementation limits the range of possible values to ± 2^16 / 10 in each field. // Note in particular that the range of years is limited to approximately ± 3276. // // The concept of weeks exists in string representations of periods, but otherwise weeks // are unimportant. The period contains a number of days from which the number of weeks can // be calculated when needed. // // Note that although fractional weeks can be parsed, they will never be returned via String(). // This is because the number of weeks is always inferred from the number of days. // type Period struct { years, months, days, hours, minutes, seconds int16 } // NewYMD creates a simple period without any fractional parts. The fields are initialised verbatim // without any normalisation; e.g. 12 months will not become 1 year. Use the Normalise method if you // need to. // // All the parameters must have the same sign (otherwise a panic occurs). func NewYMD(years, months, days int) Period { return New(years, months, days, 0, 0, 0) } // NewHMS creates a simple period without any fractional parts. The fields are initialised verbatim // without any normalisation; e.g. 120 seconds will not become 2 minutes. Use the Normalise method // if you need to. // // All the parameters must have the same sign (otherwise a panic occurs). func NewHMS(hours, minutes, seconds int) Period { return New(0, 0, 0, hours, minutes, seconds) } // New creates a simple period without any fractional parts. The fields are initialised verbatim // without any normalisation; e.g. 120 seconds will not become 2 minutes. Use the Normalise method // if you need to. // // All the parameters must have the same sign (otherwise a panic occurs). func New(years, months, days, hours, minutes, seconds int) Period { if (years >= 0 && months >= 0 && days >= 0 && hours >= 0 && minutes >= 0 && seconds >= 0) || (years <= 0 && months <= 0 && days <= 0 && hours <= 0 && minutes <= 0 && seconds <= 0) { return Period{ int16(years) * 10, int16(months) * 10, int16(days) * 10, int16(hours) * 10, int16(minutes) * 10, int16(seconds) * 10, } } panic(fmt.Sprintf("Periods must have homogeneous signs; got P%dY%dM%dDT%dH%dM%dS", years, months, days, hours, minutes, seconds)) } // TODO NewFloat // NewOf converts a time duration to a Period, and also indicates whether the conversion is precise. // Any time duration that spans more than ± 3276 hours will be approximated by assuming that there // are 24 hours per day, 30.4375 per month and 365.2425 days per year. func NewOf(duration time.Duration) (p Period, precise bool) { var sign int16 = 1 d := duration if duration < 0 { sign = -1 d = -duration } sign10 := sign * 10 totalHours := int64(d / time.Hour) // check for 16-bit overflow - occurs near the 4.5 month mark if totalHours < 3277 { // simple HMS case minutes := d % time.Hour / time.Minute seconds := d % time.Minute / hundredMs return Period{0, 0, 0, sign10 * int16(totalHours), sign10 * int16(minutes), sign * int16(seconds)}, true } totalDays := totalHours / 24 // ignoring daylight savings adjustments if totalDays < 3277 { hours := totalHours - totalDays*24 minutes := d % time.Hour / time.Minute seconds := d % time.Minute / hundredMs return Period{0, 0, sign10 * int16(totalDays), sign10 * int16(hours), sign10 * int16(minutes), sign * int16(seconds)}, false } // TODO it is uncertain whether this is too imprecise and should be improved years := (oneE4 * totalDays) / daysPerYearE4 months := ((oneE4 * totalDays) / daysPerMonthE4) - (12 * years) hours := totalHours - totalDays*24 totalDays = ((totalDays * oneE4) - (daysPerMonthE4 * months) - (daysPerYearE4 * years)) / oneE4 return Period{sign10 * int16(years), sign10 * int16(months), sign10 * int16(totalDays), sign10 * int16(hours), 0, 0}, false } // Between converts the span between two times to a period. Based on the Gregorian conversion // algorithms of `time.Time`, the resultant period is precise. // // The result is not normalised; for time differences less than 3276 days, it will contain zero in the // years and months fields but the number of days may be up to 3275; this reduces errors arising from // the variable lengths of months. For larger time differences, greater than 3276 days, the months and // years fields are used as well. // // Remember that the resultant period does not retain any knowledge of the calendar, so any subsequent // computations applied to the period can only be precise if they concern either the date (year, month, // day) part, or the clock (hour, minute, second) part, but not both. func Between(t1, t2 time.Time) (p Period) { if t1.Location() != t2.Location() { t2 = t2.In(t1.Location()) } sign := 1 if t2.Before(t1) { t1, t2, sign = t2, t1, -1 } year, month, day, hour, min, sec, hundredth := daysDiff(t1, t2) if sign < 0 { p = New(-year, -month, -day, -hour, -min, -sec) p.seconds -= int16(hundredth) } else { p = New(year, month, day, hour, min, sec) p.seconds += int16(hundredth) } return } func daysDiff(t1, t2 time.Time) (year, month, day, hour, min, sec, hundredth int) { duration := t2.Sub(t1) hh1, mm1, ss1 := t1.Clock() hh2, mm2, ss2 := t2.Clock() day = int(duration / (24 * time.Hour)) hour = int(hh2 - hh1) min = int(mm2 - mm1) sec = int(ss2 - ss1) hundredth = (t2.Nanosecond() - t1.Nanosecond()) / 100000000 // Normalize negative values if sec < 0 { sec += 60 min-- } if min < 0 { min += 60 hour-- } if hour < 0 { hour += 24 // no need to reduce day - it's calculated differently. } // test 16bit storage limit (with 1 fixed decimal place) if day > 3276 { y1, m1, d1 := t1.Date() y2, m2, d2 := t2.Date() year = y2 - y1 month = int(m2 - m1) day = d2 - d1 } return } // IsZero returns true if applied to a zero-length period. func (period Period) IsZero() bool { return period == Period{} } // IsPositive returns true if any field is greater than zero. By design, this also implies that // all the other fields are greater than or equal to zero. func (period Period) IsPositive() bool { return period.years > 0 || period.months > 0 || period.days > 0 || period.hours > 0 || period.minutes > 0 || period.seconds > 0 } // IsNegative returns true if any field is negative. By design, this also implies that // all the other fields are negative or zero. func (period Period) IsNegative() bool { return period.years < 0 || period.months < 0 || period.days < 0 || period.hours < 0 || period.minutes < 0 || period.seconds < 0 } // Sign returns +1 for positive periods and -1 for negative periods. If the period is zero, it returns zero. func (period Period) Sign() int { if period.IsZero() { return 0 } if period.IsNegative() { return -1 } return 1 } // OnlyYMD returns a new Period with only the year, month and day fields. The hour, // minute and second fields are zeroed. func (period Period) OnlyYMD() Period { return Period{period.years, period.months, period.days, 0, 0, 0} } // OnlyHMS returns a new Period with only the hour, minute and second fields. The year, // month and day fields are zeroed. func (period Period) OnlyHMS() Period { return Period{0, 0, 0, period.hours, period.minutes, period.seconds} } // Abs converts a negative period to a positive one. func (period Period) Abs() Period { return Period{absInt16(period.years), absInt16(period.months), absInt16(period.days), absInt16(period.hours), absInt16(period.minutes), absInt16(period.seconds)} } func absInt16(v int16) int16 { if v < 0 { return -v } return v } // Negate changes the sign of the period. func (period Period) Negate() Period { return Period{-period.years, -period.months, -period.days, -period.hours, -period.minutes, -period.seconds} } // Add adds two periods together. Use this method along with Negate in order to subtract periods. // // The result is not normalised and may overflow arithmetically (to make this unlikely, use Normalise on // the inputs before adding them). func (period Period) Add(that Period) Period { return Period{ period.years + that.years, period.months + that.months, period.days + that.days, period.hours + that.hours, period.minutes + that.minutes, period.seconds + that.seconds, } } // Scale a period by a multiplication factor. Obviously, this can both enlarge and shrink it, // and change the sign if negative. The result is normalised. // // Bear in mind that the internal representation is limited by fixed-point arithmetic with one // decimal place; each field is only int16. // // Known issue: scaling by a large reduction factor (i.e. much less than one) doesn't work properly. func (period Period) Scale(factor float32) Period { if -0.5 < factor && factor < 0.5 { d, pr1 := period.Duration() mul := float64(d) * float64(factor) p2, pr2 := NewOf(time.Duration(mul)) return p2.Normalise(pr1 && pr2) } y := int64(float32(period.years) * factor) m := int64(float32(period.months) * factor) d := int64(float32(period.days) * factor) hh := int64(float32(period.hours) * factor) mm := int64(float32(period.minutes) * factor) ss := int64(float32(period.seconds) * factor) return (&period64{y, m, d, hh, mm, ss, false}).normalise64(true).toPeriod() } // Years gets the whole number of years in the period. // The result is the number of years and does not include any other field. func (period Period) Years() int { return int(period.YearsFloat()) } // YearsFloat gets the number of years in the period, including a fraction if any is present. // The result is the number of years and does not include any other field. func (period Period) YearsFloat() float32 { return float32(period.years) / 10 } // Months gets the whole number of months in the period. // The result is the number of months and does not include any other field. // // Note that after normalisation, whole multiple of 12 months are added to // the number of years, so the number of months will be reduced correspondingly. func (period Period) Months() int { return int(period.MonthsFloat()) } // MonthsFloat gets the number of months in the period. // The result is the number of months and does not include any other field. // // Note that after normalisation, whole multiple of 12 months are added to // the number of years, so the number of months will be reduced correspondingly. func (period Period) MonthsFloat() float32 { return float32(period.months) / 10 } // Days gets the whole number of days in the period. This includes the implied // number of weeks but does not include any other field. func (period Period) Days() int { return int(period.DaysFloat()) } // DaysFloat gets the number of days in the period. This includes the implied // number of weeks but does not include any other field. func (period Period) DaysFloat() float32 { return float32(period.days) / 10 } // Weeks calculates the number of whole weeks from the number of days. If the result // would contain a fraction, it is truncated. // The result is the number of weeks and does not include any other field. // // Note that weeks are synthetic: they are internally represented using days. // See ModuloDays(), which returns the number of days excluding whole weeks. func (period Period) Weeks() int { return int(period.days) / 70 } // WeeksFloat calculates the number of weeks from the number of days. // The result is the number of weeks and does not include any other field. func (period Period) WeeksFloat() float32 { return float32(period.days) / 70 } // ModuloDays calculates the whole number of days remaining after the whole number of weeks // has been excluded. func (period Period) ModuloDays() int { days := absInt16(period.days) % 70 f := int(days / 10) if period.days < 0 { return -f } return f } // Hours gets the whole number of hours in the period. // The result is the number of hours and does not include any other field. func (period Period) Hours() int { return int(period.HoursFloat()) } // HoursFloat gets the number of hours in the period. // The result is the number of hours and does not include any other field. func (period Period) HoursFloat() float32 { return float32(period.hours) / 10 } // Minutes gets the whole number of minutes in the period. // The result is the number of minutes and does not include any other field. // // Note that after normalisation, whole multiple of 60 minutes are added to // the number of hours, so the number of minutes will be reduced correspondingly. func (period Period) Minutes() int { return int(period.MinutesFloat()) } // MinutesFloat gets the number of minutes in the period. // The result is the number of minutes and does not include any other field. // // Note that after normalisation, whole multiple of 60 minutes are added to // the number of hours, so the number of minutes will be reduced correspondingly. func (period Period) MinutesFloat() float32 { return float32(period.minutes) / 10 } // Seconds gets the whole number of seconds in the period. // The result is the number of seconds and does not include any other field. // // Note that after normalisation, whole multiple of 60 seconds are added to // the number of minutes, so the number of seconds will be reduced correspondingly. func (period Period) Seconds() int { return int(period.SecondsFloat()) } // SecondsFloat gets the number of seconds in the period. // The result is the number of seconds and does not include any other field. // // Note that after normalisation, whole multiple of 60 seconds are added to // the number of minutes, so the number of seconds will be reduced correspondingly. func (period Period) SecondsFloat() float32 { return float32(period.seconds) / 10 } // AddTo adds the period to a time, returning the result. // A flag is also returned that is true when the conversion was precise and false otherwise. // // When the period specifies hours, minutes and seconds only, the result is precise. // Also, when the period specifies whole years, months and days (i.e. without fractions), the // result is precise. However, when years, months or days contains fractions, the result // is only an approximation (it assumes that all days are 24 hours and every year is 365.2425 days). func (period Period) AddTo(t time.Time) (time.Time, bool) { wholeYears := (period.years % 10) == 0 wholeMonths := (period.months % 10) == 0 wholeDays := (period.days % 10) == 0 if wholeYears && wholeMonths && wholeDays { // in this case, time.AddDate provides an exact solution stE3 := totalSecondsE3(period) t1 := t.AddDate(int(period.years/10), int(period.months/10), int(period.days/10)) return t1.Add(stE3 * time.Millisecond), true } d, precise := period.Duration() return t.Add(d), precise } // DurationApprox converts a period to the equivalent duration in nanoseconds. // When the period specifies hours, minutes and seconds only, the result is precise. // however, when the period specifies years, months and days, it is impossible to be precise // because the result may depend on knowing date and timezone information, so the duration // is estimated on the basis of a year being 365.2425 days and a month being // 1/12 of a that; days are all assumed to be 24 hours long. func (period Period) DurationApprox() time.Duration { d, _ := period.Duration() return d } // Duration converts a period to the equivalent duration in nanoseconds. // A flag is also returned that is true when the conversion was precise and false otherwise. // // When the period specifies hours, minutes and seconds only, the result is precise. // however, when the period specifies years, months and days, it is impossible to be precise // because the result may depend on knowing date and timezone information, so the duration // is estimated on the basis of a year being 365.2425 days and a month being // 1/12 of a that; days are all assumed to be 24 hours long. func (period Period) Duration() (time.Duration, bool) { // remember that the fields are all fixed-point 1E1 tdE6 := time.Duration(totalDaysApproxE7(period) * 8640) stE3 := totalSecondsE3(period) return tdE6*time.Microsecond + stE3*time.Millisecond, tdE6 == 0 } func totalSecondsE3(period Period) time.Duration { // remember that the fields are all fixed-point 1E1 // and these are divided by 1E1 hhE3 := time.Duration(period.hours) * 360000 mmE3 := time.Duration(period.minutes) * 6000 ssE3 := time.Duration(period.seconds) * 100 return hhE3 + mmE3 + ssE3 } func totalDaysApproxE7(period Period) int64 { // remember that the fields are all fixed-point 1E1 ydE6 := int64(period.years) * (daysPerYearE4 * 100) mdE6 := int64(period.months) * daysPerMonthE6 ddE6 := int64(period.days) * oneE6 return ydE6 + mdE6 + ddE6 } // TotalDaysApprox gets the approximate total number of days in the period. The approximation assumes // a year is 365.2425 days and a month is 1/12 of that. Whole multiples of 24 hours are also included // in the calculation. func (period Period) TotalDaysApprox() int { pn := period.Normalise(false) tdE6 := totalDaysApproxE7(pn) hE6 := (int64(pn.hours) * oneE6) / 24 return int((tdE6 + hE6) / oneE7) } // TotalMonthsApprox gets the approximate total number of months in the period. The days component // is included by approximation, assuming a year is 365.2425 days and a month is 1/12 of that. // Whole multiples of 24 hours are also included in the calculation. func (period Period) TotalMonthsApprox() int { pn := period.Normalise(false) mE1 := int64(pn.years)*12 + int64(pn.months) hE1 := int64(pn.hours) / 24 dE1 := ((int64(pn.days) + hE1) * oneE6) / daysPerMonthE6 return int((mE1 + dE1) / 10) } // Normalise attempts to simplify the fields. It operates in either precise or imprecise mode. // // Because the number of hours per day is imprecise (due to daylight savings etc), and because // the number of days per month is variable in the Gregorian calendar, there is a reluctance // to transfer time too or from the days element. To give control over this, there are two modes. // // In precise mode: // Multiples of 60 seconds become minutes. // Multiples of 60 minutes become hours. // Multiples of 12 months become years. // // Additionally, in imprecise mode: // Multiples of 24 hours become days. // Multiples of approx. 30.4 days become months. // // Note that leap seconds are disregarded: every minute is assumed to have 60 seconds. func (period Period) Normalise(precise bool) Period { const limit = 32670 - (32670 / 60) // can we use a quicker algorithm for HHMMSS with int16 arithmetic? if period.years == 0 && period.months == 0 && (!precise || period.days == 0) && period.hours > -limit && period.hours < limit { return period.normaliseHHMMSS(precise) } // can we use a quicker algorithm for YYMM with int16 arithmetic? if (period.years != 0 || period.months != 0) && //period.months%10 == 0 && period.days == 0 && period.hours == 0 && period.minutes == 0 && period.seconds == 0 { return period.normaliseYYMM() } // do things the no-nonsense way using int64 arithmetic return period.toPeriod64().normalise64(precise).toPeriod() } func (period Period) normaliseHHMMSS(precise bool) Period { s := period.Sign() ap := period.Abs() // remember that the fields are all fixed-point 1E1 ap.minutes += (ap.seconds / 600) * 10 ap.seconds = ap.seconds % 600 ap.hours += (ap.minutes / 600) * 10 ap.minutes = ap.minutes % 600 // up to 36 hours stays as hours if !precise && ap.hours > 360 { ap.days += (ap.hours / 240) * 10 ap.hours = ap.hours % 240 } d10 := ap.days % 10 if d10 != 0 && (ap.hours != 0 || ap.minutes != 0 || ap.seconds != 0) { ap.hours += d10 * 24 ap.days -= d10 } hh10 := ap.hours % 10 if hh10 != 0 { ap.minutes += hh10 * 60 ap.hours -= hh10 } mm10 := ap.minutes % 10 if mm10 != 0 { ap.seconds += mm10 * 60 ap.minutes -= mm10 } if s < 0 { return ap.Negate() } return ap } func (period Period) normaliseYYMM() Period { s := period.Sign() ap := period.Abs() // remember that the fields are all fixed-point 1E1 if ap.months > 129 { ap.years += (ap.months / 120) * 10 ap.months = ap.months % 120 } y10 := ap.years % 10 if y10 != 0 && (ap.years < 10 || ap.months != 0) { ap.months += y10 * 12 ap.years -= y10 } if s < 0 { return ap.Negate() } return ap } //------------------------------------------------------------------------------------------------- // used for stages in arithmetic type period64 struct { years, months, days, hours, minutes, seconds int64 neg bool } func (period Period) toPeriod64() *period64 { return &period64{ int64(period.years), int64(period.months), int64(period.days), int64(period.hours), int64(period.minutes), int64(period.seconds), false, } } func (p *period64) toPeriod() Period { if p.neg { return Period{ int16(-p.years), int16(-p.months), int16(-p.days), int16(-p.hours), int16(-p.minutes), int16(-p.seconds), } } return Period{ int16(p.years), int16(p.months), int16(p.days), int16(p.hours), int16(p.minutes), int16(p.seconds), } } func (p *period64) normalise64(precise bool) *period64 { return p.abs().rippleUp(precise).moveFractionToRight() } func (p *period64) abs() *period64 { if !p.neg { if p.years < 0 { p.years = -p.years p.neg = true } if p.months < 0 { p.months = -p.months p.neg = true } if p.days < 0 { p.days = -p.days p.neg = true } if p.hours < 0 { p.hours = -p.hours p.neg = true } if p.minutes < 0 { p.minutes = -p.minutes p.neg = true } if p.seconds < 0 { p.seconds = -p.seconds p.neg = true } } return p } func (p *period64) rippleUp(precise bool) *period64 { // remember that the fields are all fixed-point 1E1 p.minutes = p.minutes + (p.seconds/600)*10 p.seconds = p.seconds % 600 p.hours = p.hours + (p.minutes/600)*10 p.minutes = p.minutes % 600 // 32670-(32670/60)-(32670/3600) = 32760 - 546 - 9.1 = 32204.9 if !precise || p.hours > 32204 { p.days += (p.hours / 240) * 10 p.hours = p.hours % 240 } if !precise || p.days > 32760 { dE6 := p.days * oneE6 p.months += dE6 / daysPerMonthE6 p.days = (dE6 % daysPerMonthE6) / oneE6 } p.years = p.years + (p.months/120)*10 p.months = p.months % 120 return p } // moveFractionToRight applies the rule that only the smallest field is permitted to have a decimal fraction. func (p *period64) moveFractionToRight() *period64 { // remember that the fields are all fixed-point 1E1 y10 := p.years % 10 if y10 != 0 && (p.months != 0 || p.days != 0 || p.hours != 0 || p.minutes != 0 || p.seconds != 0) { p.months += y10 * 12 p.years = (p.years / 10) * 10 } m10 := p.months % 10 if m10 != 0 && (p.days != 0 || p.hours != 0 || p.minutes != 0 || p.seconds != 0) { p.days += (m10 * daysPerMonthE6) / oneE6 p.months = (p.months / 10) * 10 } d10 := p.days % 10 if d10 != 0 && (p.hours != 0 || p.minutes != 0 || p.seconds != 0) { p.hours += d10 * 24 p.days = (p.days / 10) * 10 } hh10 := p.hours % 10 if hh10 != 0 && (p.minutes != 0 || p.seconds != 0) { p.minutes += hh10 * 60 p.hours = (p.hours / 10) * 10 } mm10 := p.minutes % 10 if mm10 != 0 && p.seconds != 0 { p.seconds += mm10 * 60 p.minutes = (p.minutes / 10) * 10 } return p }