package imaging import ( "image" "math" ) type indexWeight struct { index int weight float64 } func precomputeWeights(dstSize, srcSize int, filter ResampleFilter) [][]indexWeight { du := float64(srcSize) / float64(dstSize) scale := du if scale < 1.0 { scale = 1.0 } ru := math.Ceil(scale * filter.Support) out := make([][]indexWeight, dstSize) tmp := make([]indexWeight, 0, dstSize*int(ru+2)*2) for v := 0; v < dstSize; v++ { fu := (float64(v)+0.5)*du - 0.5 begin := int(math.Ceil(fu - ru)) if begin < 0 { begin = 0 } end := int(math.Floor(fu + ru)) if end > srcSize-1 { end = srcSize - 1 } var sum float64 for u := begin; u <= end; u++ { w := filter.Kernel((float64(u) - fu) / scale) if w != 0 { sum += w tmp = append(tmp, indexWeight{index: u, weight: w}) } } if sum != 0 { for i := range tmp { tmp[i].weight /= sum } } out[v] = tmp tmp = tmp[len(tmp):] } return out } // Resize resizes the image to the specified width and height using the specified resampling // filter and returns the transformed image. If one of width or height is 0, the image aspect // ratio is preserved. // // Example: // // dstImage := imaging.Resize(srcImage, 800, 600, imaging.Lanczos) // func Resize(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA { dstW, dstH := width, height if dstW < 0 || dstH < 0 { return &image.NRGBA{} } if dstW == 0 && dstH == 0 { return &image.NRGBA{} } srcW := img.Bounds().Dx() srcH := img.Bounds().Dy() if srcW <= 0 || srcH <= 0 { return &image.NRGBA{} } // If new width or height is 0 then preserve aspect ratio, minimum 1px. if dstW == 0 { tmpW := float64(dstH) * float64(srcW) / float64(srcH) dstW = int(math.Max(1.0, math.Floor(tmpW+0.5))) } if dstH == 0 { tmpH := float64(dstW) * float64(srcH) / float64(srcW) dstH = int(math.Max(1.0, math.Floor(tmpH+0.5))) } if filter.Support <= 0 { // Nearest-neighbor special case. return resizeNearest(img, dstW, dstH) } if srcW != dstW && srcH != dstH { return resizeVertical(resizeHorizontal(img, dstW, filter), dstH, filter) } if srcW != dstW { return resizeHorizontal(img, dstW, filter) } if srcH != dstH { return resizeVertical(img, dstH, filter) } return Clone(img) } func resizeHorizontal(img image.Image, width int, filter ResampleFilter) *image.NRGBA { src := newScanner(img) dst := image.NewNRGBA(image.Rect(0, 0, width, src.h)) weights := precomputeWeights(width, src.w, filter) parallel(0, src.h, func(ys <-chan int) { scanLine := make([]uint8, src.w*4) for y := range ys { src.scan(0, y, src.w, y+1, scanLine) j0 := y * dst.Stride for x := range weights { var r, g, b, a float64 for _, w := range weights[x] { i := w.index * 4 s := scanLine[i : i+4 : i+4] aw := float64(s[3]) * w.weight r += float64(s[0]) * aw g += float64(s[1]) * aw b += float64(s[2]) * aw a += aw } if a != 0 { aInv := 1 / a j := j0 + x*4 d := dst.Pix[j : j+4 : j+4] d[0] = clamp(r * aInv) d[1] = clamp(g * aInv) d[2] = clamp(b * aInv) d[3] = clamp(a) } } } }) return dst } func resizeVertical(img image.Image, height int, filter ResampleFilter) *image.NRGBA { src := newScanner(img) dst := image.NewNRGBA(image.Rect(0, 0, src.w, height)) weights := precomputeWeights(height, src.h, filter) parallel(0, src.w, func(xs <-chan int) { scanLine := make([]uint8, src.h*4) for x := range xs { src.scan(x, 0, x+1, src.h, scanLine) for y := range weights { var r, g, b, a float64 for _, w := range weights[y] { i := w.index * 4 s := scanLine[i : i+4 : i+4] aw := float64(s[3]) * w.weight r += float64(s[0]) * aw g += float64(s[1]) * aw b += float64(s[2]) * aw a += aw } if a != 0 { aInv := 1 / a j := y*dst.Stride + x*4 d := dst.Pix[j : j+4 : j+4] d[0] = clamp(r * aInv) d[1] = clamp(g * aInv) d[2] = clamp(b * aInv) d[3] = clamp(a) } } } }) return dst } // resizeNearest is a fast nearest-neighbor resize, no filtering. func resizeNearest(img image.Image, width, height int) *image.NRGBA { dst := image.NewNRGBA(image.Rect(0, 0, width, height)) dx := float64(img.Bounds().Dx()) / float64(width) dy := float64(img.Bounds().Dy()) / float64(height) if dx > 1 && dy > 1 { src := newScanner(img) parallel(0, height, func(ys <-chan int) { for y := range ys { srcY := int((float64(y) + 0.5) * dy) dstOff := y * dst.Stride for x := 0; x < width; x++ { srcX := int((float64(x) + 0.5) * dx) src.scan(srcX, srcY, srcX+1, srcY+1, dst.Pix[dstOff:dstOff+4]) dstOff += 4 } } }) } else { src := toNRGBA(img) parallel(0, height, func(ys <-chan int) { for y := range ys { srcY := int((float64(y) + 0.5) * dy) srcOff0 := srcY * src.Stride dstOff := y * dst.Stride for x := 0; x < width; x++ { srcX := int((float64(x) + 0.5) * dx) srcOff := srcOff0 + srcX*4 copy(dst.Pix[dstOff:dstOff+4], src.Pix[srcOff:srcOff+4]) dstOff += 4 } } }) } return dst } // Fit scales down the image using the specified resample filter to fit the specified // maximum width and height and returns the transformed image. // // Example: // // dstImage := imaging.Fit(srcImage, 800, 600, imaging.Lanczos) // func Fit(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA { maxW, maxH := width, height if maxW <= 0 || maxH <= 0 { return &image.NRGBA{} } srcBounds := img.Bounds() srcW := srcBounds.Dx() srcH := srcBounds.Dy() if srcW <= 0 || srcH <= 0 { return &image.NRGBA{} } if srcW <= maxW && srcH <= maxH { return Clone(img) } srcAspectRatio := float64(srcW) / float64(srcH) maxAspectRatio := float64(maxW) / float64(maxH) var newW, newH int if srcAspectRatio > maxAspectRatio { newW = maxW newH = int(float64(newW) / srcAspectRatio) } else { newH = maxH newW = int(float64(newH) * srcAspectRatio) } return Resize(img, newW, newH, filter) } // Fill creates an image with the specified dimensions and fills it with the scaled source image. // To achieve the correct aspect ratio without stretching, the source image will be cropped. // // Example: // // dstImage := imaging.Fill(srcImage, 800, 600, imaging.Center, imaging.Lanczos) // func Fill(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA { dstW, dstH := width, height if dstW <= 0 || dstH <= 0 { return &image.NRGBA{} } srcBounds := img.Bounds() srcW := srcBounds.Dx() srcH := srcBounds.Dy() if srcW <= 0 || srcH <= 0 { return &image.NRGBA{} } if srcW == dstW && srcH == dstH { return Clone(img) } if srcW >= 100 && srcH >= 100 { return cropAndResize(img, dstW, dstH, anchor, filter) } return resizeAndCrop(img, dstW, dstH, anchor, filter) } // cropAndResize crops the image to the smallest possible size that has the required aspect ratio using // the given anchor point, then scales it to the specified dimensions and returns the transformed image. // // This is generally faster than resizing first, but may result in inaccuracies when used on small source images. func cropAndResize(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA { dstW, dstH := width, height srcBounds := img.Bounds() srcW := srcBounds.Dx() srcH := srcBounds.Dy() srcAspectRatio := float64(srcW) / float64(srcH) dstAspectRatio := float64(dstW) / float64(dstH) var tmp *image.NRGBA if srcAspectRatio < dstAspectRatio { cropH := float64(srcW) * float64(dstH) / float64(dstW) tmp = CropAnchor(img, srcW, int(math.Max(1, cropH)+0.5), anchor) } else { cropW := float64(srcH) * float64(dstW) / float64(dstH) tmp = CropAnchor(img, int(math.Max(1, cropW)+0.5), srcH, anchor) } return Resize(tmp, dstW, dstH, filter) } // resizeAndCrop resizes the image to the smallest possible size that will cover the specified dimensions, // crops the resized image to the specified dimensions using the given anchor point and returns // the transformed image. func resizeAndCrop(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA { dstW, dstH := width, height srcBounds := img.Bounds() srcW := srcBounds.Dx() srcH := srcBounds.Dy() srcAspectRatio := float64(srcW) / float64(srcH) dstAspectRatio := float64(dstW) / float64(dstH) var tmp *image.NRGBA if srcAspectRatio < dstAspectRatio { tmp = Resize(img, dstW, 0, filter) } else { tmp = Resize(img, 0, dstH, filter) } return CropAnchor(tmp, dstW, dstH, anchor) } // Thumbnail scales the image up or down using the specified resample filter, crops it // to the specified width and hight and returns the transformed image. // // Example: // // dstImage := imaging.Thumbnail(srcImage, 100, 100, imaging.Lanczos) // func Thumbnail(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA { return Fill(img, width, height, Center, filter) } // ResampleFilter specifies a resampling filter to be used for image resizing. // // General filter recommendations: // // - Lanczos // A high-quality resampling filter for photographic images yielding sharp results. // // - CatmullRom // A sharp cubic filter that is faster than Lanczos filter while providing similar results. // // - MitchellNetravali // A cubic filter that produces smoother results with less ringing artifacts than CatmullRom. // // - Linear // Bilinear resampling filter, produces a smooth output. Faster than cubic filters. // // - Box // Simple and fast averaging filter appropriate for downscaling. // When upscaling it's similar to NearestNeighbor. // // - NearestNeighbor // Fastest resampling filter, no antialiasing. // type ResampleFilter struct { Support float64 Kernel func(float64) float64 } // NearestNeighbor is a nearest-neighbor filter (no anti-aliasing). var NearestNeighbor ResampleFilter // Box filter (averaging pixels). var Box ResampleFilter // Linear filter. var Linear ResampleFilter // Hermite cubic spline filter (BC-spline; B=0; C=0). var Hermite ResampleFilter // MitchellNetravali is Mitchell-Netravali cubic filter (BC-spline; B=1/3; C=1/3). var MitchellNetravali ResampleFilter // CatmullRom is a Catmull-Rom - sharp cubic filter (BC-spline; B=0; C=0.5). var CatmullRom ResampleFilter // BSpline is a smooth cubic filter (BC-spline; B=1; C=0). var BSpline ResampleFilter // Gaussian is a Gaussian blurring filter. var Gaussian ResampleFilter // Bartlett is a Bartlett-windowed sinc filter (3 lobes). var Bartlett ResampleFilter // Lanczos filter (3 lobes). var Lanczos ResampleFilter // Hann is a Hann-windowed sinc filter (3 lobes). var Hann ResampleFilter // Hamming is a Hamming-windowed sinc filter (3 lobes). var Hamming ResampleFilter // Blackman is a Blackman-windowed sinc filter (3 lobes). var Blackman ResampleFilter // Welch is a Welch-windowed sinc filter (parabolic window, 3 lobes). var Welch ResampleFilter // Cosine is a Cosine-windowed sinc filter (3 lobes). var Cosine ResampleFilter func bcspline(x, b, c float64) float64 { var y float64 x = math.Abs(x) if x < 1.0 { y = ((12-9*b-6*c)*x*x*x + (-18+12*b+6*c)*x*x + (6 - 2*b)) / 6 } else if x < 2.0 { y = ((-b-6*c)*x*x*x + (6*b+30*c)*x*x + (-12*b-48*c)*x + (8*b + 24*c)) / 6 } return y } func sinc(x float64) float64 { if x == 0 { return 1 } return math.Sin(math.Pi*x) / (math.Pi * x) } func init() { NearestNeighbor = ResampleFilter{ Support: 0.0, // special case - not applying the filter } Box = ResampleFilter{ Support: 0.5, Kernel: func(x float64) float64 { x = math.Abs(x) if x <= 0.5 { return 1.0 } return 0 }, } Linear = ResampleFilter{ Support: 1.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 1.0 { return 1.0 - x } return 0 }, } Hermite = ResampleFilter{ Support: 1.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 1.0 { return bcspline(x, 0.0, 0.0) } return 0 }, } MitchellNetravali = ResampleFilter{ Support: 2.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 2.0 { return bcspline(x, 1.0/3.0, 1.0/3.0) } return 0 }, } CatmullRom = ResampleFilter{ Support: 2.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 2.0 { return bcspline(x, 0.0, 0.5) } return 0 }, } BSpline = ResampleFilter{ Support: 2.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 2.0 { return bcspline(x, 1.0, 0.0) } return 0 }, } Gaussian = ResampleFilter{ Support: 2.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 2.0 { return math.Exp(-2 * x * x) } return 0 }, } Bartlett = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * (3.0 - x) / 3.0 } return 0 }, } Lanczos = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * sinc(x/3.0) } return 0 }, } Hann = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * (0.5 + 0.5*math.Cos(math.Pi*x/3.0)) } return 0 }, } Hamming = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * (0.54 + 0.46*math.Cos(math.Pi*x/3.0)) } return 0 }, } Blackman = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * (0.42 - 0.5*math.Cos(math.Pi*x/3.0+math.Pi) + 0.08*math.Cos(2.0*math.Pi*x/3.0)) } return 0 }, } Welch = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * (1.0 - (x * x / 9.0)) } return 0 }, } Cosine = ResampleFilter{ Support: 3.0, Kernel: func(x float64) float64 { x = math.Abs(x) if x < 3.0 { return sinc(x) * math.Cos((math.Pi/2.0)*(x/3.0)) } return 0 }, } }