// Inferno utils/6l/pass.c // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/pass.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package x86 import ( "fmt" "log" "math" "strings" "github.com/google/gops/internal/obj" "github.com/google/gops/internal/sys" ) func CanUse1InsnTLS(ctxt *obj.Link) bool { if isAndroid { // For android, we use a disgusting hack that assumes // the thread-local storage slot for g is allocated // using pthread_key_create with a fixed offset // (see src/runtime/cgo/gcc_android_amd64.c). // This makes access to the TLS storage (for g) doable // with 1 instruction. return true } if ctxt.Arch.RegSize == 4 { switch ctxt.Headtype { case obj.Hlinux, obj.Hnacl, obj.Hplan9, obj.Hwindows, obj.Hwindowsgui: return false } return true } switch ctxt.Headtype { case obj.Hplan9, obj.Hwindows, obj.Hwindowsgui: return false case obj.Hlinux: return !ctxt.Flag_shared } return true } func progedit(ctxt *obj.Link, p *obj.Prog) { // Maintain information about code generation mode. if ctxt.Mode == 0 { ctxt.Mode = ctxt.Arch.RegSize * 8 } p.Mode = int8(ctxt.Mode) switch p.As { case AMODE: if p.From.Type == obj.TYPE_CONST || (p.From.Type == obj.TYPE_MEM && p.From.Reg == REG_NONE) { switch int(p.From.Offset) { case 16, 32, 64: ctxt.Mode = int(p.From.Offset) } } obj.Nopout(p) } // Thread-local storage references use the TLS pseudo-register. // As a register, TLS refers to the thread-local storage base, and it // can only be loaded into another register: // // MOVQ TLS, AX // // An offset from the thread-local storage base is written off(reg)(TLS*1). // Semantically it is off(reg), but the (TLS*1) annotation marks this as // indexing from the loaded TLS base. This emits a relocation so that // if the linker needs to adjust the offset, it can. For example: // // MOVQ TLS, AX // MOVQ 0(AX)(TLS*1), CX // load g into CX // // On systems that support direct access to the TLS memory, this // pair of instructions can be reduced to a direct TLS memory reference: // // MOVQ 0(TLS), CX // load g into CX // // The 2-instruction and 1-instruction forms correspond to the two code // sequences for loading a TLS variable in the local exec model given in "ELF // Handling For Thread-Local Storage". // // We apply this rewrite on systems that support the 1-instruction form. // The decision is made using only the operating system and the -shared flag, // not the link mode. If some link modes on a particular operating system // require the 2-instruction form, then all builds for that operating system // will use the 2-instruction form, so that the link mode decision can be // delayed to link time. // // In this way, all supported systems use identical instructions to // access TLS, and they are rewritten appropriately first here in // liblink and then finally using relocations in the linker. // // When -shared is passed, we leave the code in the 2-instruction form but // assemble (and relocate) them in different ways to generate the initial // exec code sequence. It's a bit of a fluke that this is possible without // rewriting the instructions more comprehensively, and it only does because // we only support a single TLS variable (g). if CanUse1InsnTLS(ctxt) { // Reduce 2-instruction sequence to 1-instruction sequence. // Sequences like // MOVQ TLS, BX // ... off(BX)(TLS*1) ... // become // NOP // ... off(TLS) ... // // TODO(rsc): Remove the Hsolaris special case. It exists only to // guarantee we are producing byte-identical binaries as before this code. // But it should be unnecessary. if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_REG && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 && ctxt.Headtype != obj.Hsolaris { obj.Nopout(p) } if p.From.Type == obj.TYPE_MEM && p.From.Index == REG_TLS && REG_AX <= p.From.Reg && p.From.Reg <= REG_R15 { p.From.Reg = REG_TLS p.From.Scale = 0 p.From.Index = REG_NONE } if p.To.Type == obj.TYPE_MEM && p.To.Index == REG_TLS && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 { p.To.Reg = REG_TLS p.To.Scale = 0 p.To.Index = REG_NONE } } else { // load_g_cx, below, always inserts the 1-instruction sequence. Rewrite it // as the 2-instruction sequence if necessary. // MOVQ 0(TLS), BX // becomes // MOVQ TLS, BX // MOVQ 0(BX)(TLS*1), BX if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_MEM && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 { q := obj.Appendp(ctxt, p) q.As = p.As q.From = p.From q.From.Type = obj.TYPE_MEM q.From.Reg = p.To.Reg q.From.Index = REG_TLS q.From.Scale = 2 // TODO: use 1 q.To = p.To p.From.Type = obj.TYPE_REG p.From.Reg = REG_TLS p.From.Index = REG_NONE p.From.Offset = 0 } } // TODO: Remove. if (ctxt.Headtype == obj.Hwindows || ctxt.Headtype == obj.Hwindowsgui) && p.Mode == 64 || ctxt.Headtype == obj.Hplan9 { if p.From.Scale == 1 && p.From.Index == REG_TLS { p.From.Scale = 2 } if p.To.Scale == 1 && p.To.Index == REG_TLS { p.To.Scale = 2 } } // Rewrite 0 to $0 in 3rd argument to CMPPS etc. // That's what the tables expect. switch p.As { case ACMPPD, ACMPPS, ACMPSD, ACMPSS: if p.To.Type == obj.TYPE_MEM && p.To.Name == obj.NAME_NONE && p.To.Reg == REG_NONE && p.To.Index == REG_NONE && p.To.Sym == nil { p.To.Type = obj.TYPE_CONST } } // Rewrite CALL/JMP/RET to symbol as TYPE_BRANCH. switch p.As { case obj.ACALL, obj.AJMP, obj.ARET: if p.To.Type == obj.TYPE_MEM && (p.To.Name == obj.NAME_EXTERN || p.To.Name == obj.NAME_STATIC) && p.To.Sym != nil { p.To.Type = obj.TYPE_BRANCH } } // Rewrite MOVL/MOVQ $XXX(FP/SP) as LEAL/LEAQ. if p.From.Type == obj.TYPE_ADDR && (ctxt.Arch.Family == sys.AMD64 || p.From.Name != obj.NAME_EXTERN && p.From.Name != obj.NAME_STATIC) { switch p.As { case AMOVL: p.As = ALEAL p.From.Type = obj.TYPE_MEM case AMOVQ: p.As = ALEAQ p.From.Type = obj.TYPE_MEM } } if ctxt.Headtype == obj.Hnacl && p.Mode == 64 { if p.From3 != nil { nacladdr(ctxt, p, p.From3) } nacladdr(ctxt, p, &p.From) nacladdr(ctxt, p, &p.To) } // Rewrite float constants to values stored in memory. switch p.As { // Convert AMOVSS $(0), Xx to AXORPS Xx, Xx case AMOVSS: if p.From.Type == obj.TYPE_FCONST { // f == 0 can't be used here due to -0, so use Float64bits if f := p.From.Val.(float64); math.Float64bits(f) == 0 { if p.To.Type == obj.TYPE_REG && REG_X0 <= p.To.Reg && p.To.Reg <= REG_X15 { p.As = AXORPS p.From = p.To break } } } fallthrough case AFMOVF, AFADDF, AFSUBF, AFSUBRF, AFMULF, AFDIVF, AFDIVRF, AFCOMF, AFCOMFP, AADDSS, ASUBSS, AMULSS, ADIVSS, ACOMISS, AUCOMISS: if p.From.Type == obj.TYPE_FCONST { f32 := float32(p.From.Val.(float64)) i32 := math.Float32bits(f32) literal := fmt.Sprintf("$f32.%08x", i32) s := obj.Linklookup(ctxt, literal, 0) p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_EXTERN p.From.Sym = s p.From.Sym.Set(obj.AttrLocal, true) p.From.Offset = 0 } case AMOVSD: // Convert AMOVSD $(0), Xx to AXORPS Xx, Xx if p.From.Type == obj.TYPE_FCONST { // f == 0 can't be used here due to -0, so use Float64bits if f := p.From.Val.(float64); math.Float64bits(f) == 0 { if p.To.Type == obj.TYPE_REG && REG_X0 <= p.To.Reg && p.To.Reg <= REG_X15 { p.As = AXORPS p.From = p.To break } } } fallthrough case AFMOVD, AFADDD, AFSUBD, AFSUBRD, AFMULD, AFDIVD, AFDIVRD, AFCOMD, AFCOMDP, AADDSD, ASUBSD, AMULSD, ADIVSD, ACOMISD, AUCOMISD: if p.From.Type == obj.TYPE_FCONST { i64 := math.Float64bits(p.From.Val.(float64)) literal := fmt.Sprintf("$f64.%016x", i64) s := obj.Linklookup(ctxt, literal, 0) p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_EXTERN p.From.Sym = s p.From.Sym.Set(obj.AttrLocal, true) p.From.Offset = 0 } } if ctxt.Flag_dynlink { rewriteToUseGot(ctxt, p) } if ctxt.Flag_shared && p.Mode == 32 { rewriteToPcrel(ctxt, p) } } // Rewrite p, if necessary, to access global data via the global offset table. func rewriteToUseGot(ctxt *obj.Link, p *obj.Prog) { var add, lea, mov obj.As var reg int16 if p.Mode == 64 { add = AADDQ lea = ALEAQ mov = AMOVQ reg = REG_R15 } else { add = AADDL lea = ALEAL mov = AMOVL reg = REG_CX if p.As == ALEAL && p.To.Reg != p.From.Reg && p.To.Reg != p.From.Index { // Special case: clobber the destination register with // the PC so we don't have to clobber CX. // The SSA backend depends on CX not being clobbered across LEAL. // See cmd/compile/internal/ssa/gen/386.rules (search for Flag_shared). reg = p.To.Reg } } if p.As == obj.ADUFFCOPY || p.As == obj.ADUFFZERO { // ADUFFxxx $offset // becomes // $MOV runtime.duffxxx@GOT, $reg // $ADD $offset, $reg // CALL $reg var sym *obj.LSym if p.As == obj.ADUFFZERO { sym = obj.Linklookup(ctxt, "runtime.duffzero", 0) } else { sym = obj.Linklookup(ctxt, "runtime.duffcopy", 0) } offset := p.To.Offset p.As = mov p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_GOTREF p.From.Sym = sym p.To.Type = obj.TYPE_REG p.To.Reg = reg p.To.Offset = 0 p.To.Sym = nil p1 := obj.Appendp(ctxt, p) p1.As = add p1.From.Type = obj.TYPE_CONST p1.From.Offset = offset p1.To.Type = obj.TYPE_REG p1.To.Reg = reg p2 := obj.Appendp(ctxt, p1) p2.As = obj.ACALL p2.To.Type = obj.TYPE_REG p2.To.Reg = reg } // We only care about global data: NAME_EXTERN means a global // symbol in the Go sense, and p.Sym.Local is true for a few // internally defined symbols. if p.As == lea && p.From.Type == obj.TYPE_MEM && p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local() { // $LEA sym, Rx becomes $MOV $sym, Rx which will be rewritten below p.As = mov p.From.Type = obj.TYPE_ADDR } if p.From.Type == obj.TYPE_ADDR && p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local() { // $MOV $sym, Rx becomes $MOV sym@GOT, Rx // $MOV $sym+, Rx becomes $MOV sym@GOT, Rx; $LEA (Rx), Rx // On 386 only, more complicated things like PUSHL $sym become $MOV sym@GOT, CX; PUSHL CX cmplxdest := false pAs := p.As var dest obj.Addr if p.To.Type != obj.TYPE_REG || pAs != mov { if p.Mode == 64 { ctxt.Diag("do not know how to handle LEA-type insn to non-register in %v with -dynlink", p) } cmplxdest = true dest = p.To p.As = mov p.To.Type = obj.TYPE_REG p.To.Reg = reg p.To.Sym = nil p.To.Name = obj.NAME_NONE } p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_GOTREF q := p if p.From.Offset != 0 { q = obj.Appendp(ctxt, p) q.As = lea q.From.Type = obj.TYPE_MEM q.From.Reg = p.To.Reg q.From.Offset = p.From.Offset q.To = p.To p.From.Offset = 0 } if cmplxdest { q = obj.Appendp(ctxt, q) q.As = pAs q.To = dest q.From.Type = obj.TYPE_REG q.From.Reg = reg } } if p.From3 != nil && p.From3.Name == obj.NAME_EXTERN { ctxt.Diag("don't know how to handle %v with -dynlink", p) } var source *obj.Addr // MOVx sym, Ry becomes $MOV sym@GOT, R15; MOVx (R15), Ry // MOVx Ry, sym becomes $MOV sym@GOT, R15; MOVx Ry, (R15) // An addition may be inserted between the two MOVs if there is an offset. if p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local() { if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local() { ctxt.Diag("cannot handle NAME_EXTERN on both sides in %v with -dynlink", p) } source = &p.From } else if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local() { source = &p.To } else { return } if p.As == obj.ACALL { // When dynlinking on 386, almost any call might end up being a call // to a PLT, so make sure the GOT pointer is loaded into BX. // RegTo2 is set on the replacement call insn to stop it being // processed when it is in turn passed to progedit. if p.Mode == 64 || (p.To.Sym != nil && p.To.Sym.Local()) || p.RegTo2 != 0 { return } p1 := obj.Appendp(ctxt, p) p2 := obj.Appendp(ctxt, p1) p1.As = ALEAL p1.From.Type = obj.TYPE_MEM p1.From.Name = obj.NAME_STATIC p1.From.Sym = obj.Linklookup(ctxt, "_GLOBAL_OFFSET_TABLE_", 0) p1.To.Type = obj.TYPE_REG p1.To.Reg = REG_BX p2.As = p.As p2.Scond = p.Scond p2.From = p.From p2.From3 = p.From3 p2.Reg = p.Reg p2.To = p.To // p.To.Type was set to TYPE_BRANCH above, but that makes checkaddr // in ../pass.go complain, so set it back to TYPE_MEM here, until p2 // itself gets passed to progedit. p2.To.Type = obj.TYPE_MEM p2.RegTo2 = 1 obj.Nopout(p) return } if p.As == obj.ATEXT || p.As == obj.AFUNCDATA || p.As == obj.ARET || p.As == obj.AJMP { return } if source.Type != obj.TYPE_MEM { ctxt.Diag("don't know how to handle %v with -dynlink", p) } p1 := obj.Appendp(ctxt, p) p2 := obj.Appendp(ctxt, p1) p1.As = mov p1.From.Type = obj.TYPE_MEM p1.From.Sym = source.Sym p1.From.Name = obj.NAME_GOTREF p1.To.Type = obj.TYPE_REG p1.To.Reg = reg p2.As = p.As p2.From = p.From p2.To = p.To if p.From.Name == obj.NAME_EXTERN { p2.From.Reg = reg p2.From.Name = obj.NAME_NONE p2.From.Sym = nil } else if p.To.Name == obj.NAME_EXTERN { p2.To.Reg = reg p2.To.Name = obj.NAME_NONE p2.To.Sym = nil } else { return } obj.Nopout(p) } func rewriteToPcrel(ctxt *obj.Link, p *obj.Prog) { // RegTo2 is set on the instructions we insert here so they don't get // processed twice. if p.RegTo2 != 0 { return } if p.As == obj.ATEXT || p.As == obj.AFUNCDATA || p.As == obj.ACALL || p.As == obj.ARET || p.As == obj.AJMP { return } // Any Prog (aside from the above special cases) with an Addr with Name == // NAME_EXTERN, NAME_STATIC or NAME_GOTREF has a CALL __x86.get_pc_thunk.XX // inserted before it. isName := func(a *obj.Addr) bool { if a.Sym == nil || (a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR) || a.Reg != 0 { return false } if a.Sym.Type == obj.STLSBSS { return false } return a.Name == obj.NAME_EXTERN || a.Name == obj.NAME_STATIC || a.Name == obj.NAME_GOTREF } if isName(&p.From) && p.From.Type == obj.TYPE_ADDR { // Handle things like "MOVL $sym, (SP)" or "PUSHL $sym" by rewriting // to "MOVL $sym, CX; MOVL CX, (SP)" or "MOVL $sym, CX; PUSHL CX" // respectively. if p.To.Type != obj.TYPE_REG { q := obj.Appendp(ctxt, p) q.As = p.As q.From.Type = obj.TYPE_REG q.From.Reg = REG_CX q.To = p.To p.As = AMOVL p.To.Type = obj.TYPE_REG p.To.Reg = REG_CX p.To.Sym = nil p.To.Name = obj.NAME_NONE } } if !isName(&p.From) && !isName(&p.To) && (p.From3 == nil || !isName(p.From3)) { return } var dst int16 = REG_CX if (p.As == ALEAL || p.As == AMOVL) && p.To.Reg != p.From.Reg && p.To.Reg != p.From.Index { dst = p.To.Reg // Why? See the comment near the top of rewriteToUseGot above. // AMOVLs might be introduced by the GOT rewrites. } q := obj.Appendp(ctxt, p) q.RegTo2 = 1 r := obj.Appendp(ctxt, q) r.RegTo2 = 1 q.As = obj.ACALL q.To.Sym = obj.Linklookup(ctxt, "__x86.get_pc_thunk."+strings.ToLower(Rconv(int(dst))), 0) q.To.Type = obj.TYPE_MEM q.To.Name = obj.NAME_EXTERN q.To.Sym.Set(obj.AttrLocal, true) r.As = p.As r.Scond = p.Scond r.From = p.From r.From3 = p.From3 r.Reg = p.Reg r.To = p.To if isName(&p.From) { r.From.Reg = dst } if isName(&p.To) { r.To.Reg = dst } if p.From3 != nil && isName(p.From3) { r.From3.Reg = dst } obj.Nopout(p) } func nacladdr(ctxt *obj.Link, p *obj.Prog, a *obj.Addr) { if p.As == ALEAL || p.As == ALEAQ { return } if a.Reg == REG_BP { ctxt.Diag("invalid address: %v", p) return } if a.Reg == REG_TLS { a.Reg = REG_BP } if a.Type == obj.TYPE_MEM && a.Name == obj.NAME_NONE { switch a.Reg { // all ok case REG_BP, REG_SP, REG_R15: break default: if a.Index != REG_NONE { ctxt.Diag("invalid address %v", p) } a.Index = a.Reg if a.Index != REG_NONE { a.Scale = 1 } a.Reg = REG_R15 } } } func preprocess(ctxt *obj.Link, cursym *obj.LSym) { if ctxt.Headtype == obj.Hplan9 && ctxt.Plan9privates == nil { ctxt.Plan9privates = obj.Linklookup(ctxt, "_privates", 0) } ctxt.Cursym = cursym if cursym.Text == nil || cursym.Text.Link == nil { return } p := cursym.Text autoffset := int32(p.To.Offset) if autoffset < 0 { autoffset = 0 } var bpsize int if p.Mode == 64 && ctxt.Framepointer_enabled && autoffset > 0 && p.From3.Offset&obj.NOFRAME == 0 { // Make room for to save a base pointer. If autoffset == 0, // this might do something special like a tail jump to // another function, so in that case we omit this. bpsize = ctxt.Arch.PtrSize autoffset += int32(bpsize) p.To.Offset += int64(bpsize) } else { bpsize = 0 } textarg := int64(p.To.Val.(int32)) cursym.Args = int32(textarg) cursym.Locals = int32(p.To.Offset) // TODO(rsc): Remove. if p.Mode == 32 && cursym.Locals < 0 { cursym.Locals = 0 } // TODO(rsc): Remove 'p.Mode == 64 &&'. if p.Mode == 64 && autoffset < obj.StackSmall && p.From3Offset()&obj.NOSPLIT == 0 { leaf := true LeafSearch: for q := p; q != nil; q = q.Link { switch q.As { case obj.ACALL: // Treat common runtime calls that take no arguments // the same as duffcopy and duffzero. if !isZeroArgRuntimeCall(q.To.Sym) { leaf = false break LeafSearch } fallthrough case obj.ADUFFCOPY, obj.ADUFFZERO: if autoffset >= obj.StackSmall-8 { leaf = false break LeafSearch } } } if leaf { p.From3.Offset |= obj.NOSPLIT } } if p.From3Offset()&obj.NOSPLIT == 0 || p.From3Offset()&obj.WRAPPER != 0 { p = obj.Appendp(ctxt, p) p = load_g_cx(ctxt, p) // load g into CX } if cursym.Text.From3Offset()&obj.NOSPLIT == 0 { p = stacksplit(ctxt, p, autoffset, int32(textarg)) // emit split check } if autoffset != 0 { if autoffset%int32(ctxt.Arch.RegSize) != 0 { ctxt.Diag("unaligned stack size %d", autoffset) } p = obj.Appendp(ctxt, p) p.As = AADJSP p.From.Type = obj.TYPE_CONST p.From.Offset = int64(autoffset) p.Spadj = autoffset } deltasp := autoffset if bpsize > 0 { // Save caller's BP p = obj.Appendp(ctxt, p) p.As = AMOVQ p.From.Type = obj.TYPE_REG p.From.Reg = REG_BP p.To.Type = obj.TYPE_MEM p.To.Reg = REG_SP p.To.Scale = 1 p.To.Offset = int64(autoffset) - int64(bpsize) // Move current frame to BP p = obj.Appendp(ctxt, p) p.As = ALEAQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Scale = 1 p.From.Offset = int64(autoffset) - int64(bpsize) p.To.Type = obj.TYPE_REG p.To.Reg = REG_BP } if cursym.Text.From3Offset()&obj.WRAPPER != 0 { // if(g->panic != nil && g->panic->argp == FP) g->panic->argp = bottom-of-frame // // MOVQ g_panic(CX), BX // TESTQ BX, BX // JEQ end // LEAQ (autoffset+8)(SP), DI // CMPQ panic_argp(BX), DI // JNE end // MOVQ SP, panic_argp(BX) // end: // NOP // // The NOP is needed to give the jumps somewhere to land. // It is a liblink NOP, not an x86 NOP: it encodes to 0 instruction bytes. p = obj.Appendp(ctxt, p) p.As = AMOVQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_CX p.From.Offset = 4 * int64(ctxt.Arch.PtrSize) // G.panic p.To.Type = obj.TYPE_REG p.To.Reg = REG_BX if ctxt.Headtype == obj.Hnacl && p.Mode == 64 { p.As = AMOVL p.From.Type = obj.TYPE_MEM p.From.Reg = REG_R15 p.From.Scale = 1 p.From.Index = REG_CX } if p.Mode == 32 { p.As = AMOVL } p = obj.Appendp(ctxt, p) p.As = ATESTQ p.From.Type = obj.TYPE_REG p.From.Reg = REG_BX p.To.Type = obj.TYPE_REG p.To.Reg = REG_BX if ctxt.Headtype == obj.Hnacl || p.Mode == 32 { p.As = ATESTL } p = obj.Appendp(ctxt, p) p.As = AJEQ p.To.Type = obj.TYPE_BRANCH p1 := p p = obj.Appendp(ctxt, p) p.As = ALEAQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Offset = int64(autoffset) + int64(ctxt.Arch.RegSize) p.To.Type = obj.TYPE_REG p.To.Reg = REG_DI if ctxt.Headtype == obj.Hnacl || p.Mode == 32 { p.As = ALEAL } p = obj.Appendp(ctxt, p) p.As = ACMPQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_BX p.From.Offset = 0 // Panic.argp p.To.Type = obj.TYPE_REG p.To.Reg = REG_DI if ctxt.Headtype == obj.Hnacl && p.Mode == 64 { p.As = ACMPL p.From.Type = obj.TYPE_MEM p.From.Reg = REG_R15 p.From.Scale = 1 p.From.Index = REG_BX } if p.Mode == 32 { p.As = ACMPL } p = obj.Appendp(ctxt, p) p.As = AJNE p.To.Type = obj.TYPE_BRANCH p2 := p p = obj.Appendp(ctxt, p) p.As = AMOVQ p.From.Type = obj.TYPE_REG p.From.Reg = REG_SP p.To.Type = obj.TYPE_MEM p.To.Reg = REG_BX p.To.Offset = 0 // Panic.argp if ctxt.Headtype == obj.Hnacl && p.Mode == 64 { p.As = AMOVL p.To.Type = obj.TYPE_MEM p.To.Reg = REG_R15 p.To.Scale = 1 p.To.Index = REG_BX } if p.Mode == 32 { p.As = AMOVL } p = obj.Appendp(ctxt, p) p.As = obj.ANOP p1.Pcond = p p2.Pcond = p } for ; p != nil; p = p.Link { pcsize := int(p.Mode) / 8 switch p.From.Name { case obj.NAME_AUTO: p.From.Offset += int64(deltasp) - int64(bpsize) case obj.NAME_PARAM: p.From.Offset += int64(deltasp) + int64(pcsize) } if p.From3 != nil { switch p.From3.Name { case obj.NAME_AUTO: p.From3.Offset += int64(deltasp) - int64(bpsize) case obj.NAME_PARAM: p.From3.Offset += int64(deltasp) + int64(pcsize) } } switch p.To.Name { case obj.NAME_AUTO: p.To.Offset += int64(deltasp) - int64(bpsize) case obj.NAME_PARAM: p.To.Offset += int64(deltasp) + int64(pcsize) } switch p.As { default: continue case APUSHL, APUSHFL: deltasp += 4 p.Spadj = 4 continue case APUSHQ, APUSHFQ: deltasp += 8 p.Spadj = 8 continue case APUSHW, APUSHFW: deltasp += 2 p.Spadj = 2 continue case APOPL, APOPFL: deltasp -= 4 p.Spadj = -4 continue case APOPQ, APOPFQ: deltasp -= 8 p.Spadj = -8 continue case APOPW, APOPFW: deltasp -= 2 p.Spadj = -2 continue case obj.ARET: // do nothing } if autoffset != deltasp { ctxt.Diag("unbalanced PUSH/POP") } if autoffset != 0 { if bpsize > 0 { // Restore caller's BP p.As = AMOVQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Scale = 1 p.From.Offset = int64(autoffset) - int64(bpsize) p.To.Type = obj.TYPE_REG p.To.Reg = REG_BP p = obj.Appendp(ctxt, p) } p.As = AADJSP p.From.Type = obj.TYPE_CONST p.From.Offset = int64(-autoffset) p.Spadj = -autoffset p = obj.Appendp(ctxt, p) p.As = obj.ARET // If there are instructions following // this ARET, they come from a branch // with the same stackframe, so undo // the cleanup. p.Spadj = +autoffset } if p.To.Sym != nil { // retjmp p.As = obj.AJMP } } } func isZeroArgRuntimeCall(s *obj.LSym) bool { if s == nil { return false } switch s.Name { case "runtime.panicindex", "runtime.panicslice", "runtime.panicdivide": return true } return false } func indir_cx(ctxt *obj.Link, p *obj.Prog, a *obj.Addr) { if ctxt.Headtype == obj.Hnacl && p.Mode == 64 { a.Type = obj.TYPE_MEM a.Reg = REG_R15 a.Index = REG_CX a.Scale = 1 return } a.Type = obj.TYPE_MEM a.Reg = REG_CX } // Append code to p to load g into cx. // Overwrites p with the first instruction (no first appendp). // Overwriting p is unusual but it lets use this in both the // prologue (caller must call appendp first) and in the epilogue. // Returns last new instruction. func load_g_cx(ctxt *obj.Link, p *obj.Prog) *obj.Prog { p.As = AMOVQ if ctxt.Arch.PtrSize == 4 { p.As = AMOVL } p.From.Type = obj.TYPE_MEM p.From.Reg = REG_TLS p.From.Offset = 0 p.To.Type = obj.TYPE_REG p.To.Reg = REG_CX next := p.Link progedit(ctxt, p) for p.Link != next { p = p.Link } if p.From.Index == REG_TLS { p.From.Scale = 2 } return p } // Append code to p to check for stack split. // Appends to (does not overwrite) p. // Assumes g is in CX. // Returns last new instruction. func stacksplit(ctxt *obj.Link, p *obj.Prog, framesize int32, textarg int32) *obj.Prog { cmp := ACMPQ lea := ALEAQ mov := AMOVQ sub := ASUBQ if ctxt.Headtype == obj.Hnacl || p.Mode == 32 { cmp = ACMPL lea = ALEAL mov = AMOVL sub = ASUBL } var q1 *obj.Prog if framesize <= obj.StackSmall { // small stack: SP <= stackguard // CMPQ SP, stackguard p = obj.Appendp(ctxt, p) p.As = cmp p.From.Type = obj.TYPE_REG p.From.Reg = REG_SP indir_cx(ctxt, p, &p.To) p.To.Offset = 2 * int64(ctxt.Arch.PtrSize) // G.stackguard0 if ctxt.Cursym.CFunc() { p.To.Offset = 3 * int64(ctxt.Arch.PtrSize) // G.stackguard1 } } else if framesize <= obj.StackBig { // large stack: SP-framesize <= stackguard-StackSmall // LEAQ -xxx(SP), AX // CMPQ AX, stackguard p = obj.Appendp(ctxt, p) p.As = lea p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Offset = -(int64(framesize) - obj.StackSmall) p.To.Type = obj.TYPE_REG p.To.Reg = REG_AX p = obj.Appendp(ctxt, p) p.As = cmp p.From.Type = obj.TYPE_REG p.From.Reg = REG_AX indir_cx(ctxt, p, &p.To) p.To.Offset = 2 * int64(ctxt.Arch.PtrSize) // G.stackguard0 if ctxt.Cursym.CFunc() { p.To.Offset = 3 * int64(ctxt.Arch.PtrSize) // G.stackguard1 } } else { // Such a large stack we need to protect against wraparound. // If SP is close to zero: // SP-stackguard+StackGuard <= framesize + (StackGuard-StackSmall) // The +StackGuard on both sides is required to keep the left side positive: // SP is allowed to be slightly below stackguard. See stack.h. // // Preemption sets stackguard to StackPreempt, a very large value. // That breaks the math above, so we have to check for that explicitly. // MOVQ stackguard, CX // CMPQ CX, $StackPreempt // JEQ label-of-call-to-morestack // LEAQ StackGuard(SP), AX // SUBQ CX, AX // CMPQ AX, $(framesize+(StackGuard-StackSmall)) p = obj.Appendp(ctxt, p) p.As = mov indir_cx(ctxt, p, &p.From) p.From.Offset = 2 * int64(ctxt.Arch.PtrSize) // G.stackguard0 if ctxt.Cursym.CFunc() { p.From.Offset = 3 * int64(ctxt.Arch.PtrSize) // G.stackguard1 } p.To.Type = obj.TYPE_REG p.To.Reg = REG_SI p = obj.Appendp(ctxt, p) p.As = cmp p.From.Type = obj.TYPE_REG p.From.Reg = REG_SI p.To.Type = obj.TYPE_CONST p.To.Offset = obj.StackPreempt if p.Mode == 32 { p.To.Offset = int64(uint32(obj.StackPreempt & (1<<32 - 1))) } p = obj.Appendp(ctxt, p) p.As = AJEQ p.To.Type = obj.TYPE_BRANCH q1 = p p = obj.Appendp(ctxt, p) p.As = lea p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Offset = obj.StackGuard p.To.Type = obj.TYPE_REG p.To.Reg = REG_AX p = obj.Appendp(ctxt, p) p.As = sub p.From.Type = obj.TYPE_REG p.From.Reg = REG_SI p.To.Type = obj.TYPE_REG p.To.Reg = REG_AX p = obj.Appendp(ctxt, p) p.As = cmp p.From.Type = obj.TYPE_REG p.From.Reg = REG_AX p.To.Type = obj.TYPE_CONST p.To.Offset = int64(framesize) + (obj.StackGuard - obj.StackSmall) } // common jls := obj.Appendp(ctxt, p) jls.As = AJLS jls.To.Type = obj.TYPE_BRANCH var last *obj.Prog for last = ctxt.Cursym.Text; last.Link != nil; last = last.Link { } // Now we are at the end of the function, but logically // we are still in function prologue. We need to fix the // SP data and PCDATA. spfix := obj.Appendp(ctxt, last) spfix.As = obj.ANOP spfix.Spadj = -framesize pcdata := obj.Appendp(ctxt, spfix) pcdata.Lineno = ctxt.Cursym.Text.Lineno pcdata.Mode = ctxt.Cursym.Text.Mode pcdata.As = obj.APCDATA pcdata.From.Type = obj.TYPE_CONST pcdata.From.Offset = obj.PCDATA_StackMapIndex pcdata.To.Type = obj.TYPE_CONST pcdata.To.Offset = -1 // pcdata starts at -1 at function entry call := obj.Appendp(ctxt, pcdata) call.Lineno = ctxt.Cursym.Text.Lineno call.Mode = ctxt.Cursym.Text.Mode call.As = obj.ACALL call.To.Type = obj.TYPE_BRANCH call.To.Name = obj.NAME_EXTERN morestack := "runtime.morestack" switch { case ctxt.Cursym.CFunc(): morestack = "runtime.morestackc" case ctxt.Cursym.Text.From3Offset()&obj.NEEDCTXT == 0: morestack = "runtime.morestack_noctxt" } call.To.Sym = obj.Linklookup(ctxt, morestack, 0) // When compiling 386 code for dynamic linking, the call needs to be adjusted // to follow PIC rules. This in turn can insert more instructions, so we need // to keep track of the start of the call (where the jump will be to) and the // end (which following instructions are appended to). callend := call progedit(ctxt, callend) for ; callend.Link != nil; callend = callend.Link { progedit(ctxt, callend.Link) } jmp := obj.Appendp(ctxt, callend) jmp.As = obj.AJMP jmp.To.Type = obj.TYPE_BRANCH jmp.Pcond = ctxt.Cursym.Text.Link jmp.Spadj = +framesize jls.Pcond = call if q1 != nil { q1.Pcond = call } return jls } func follow(ctxt *obj.Link, s *obj.LSym) { ctxt.Cursym = s firstp := ctxt.NewProg() lastp := firstp xfol(ctxt, s.Text, &lastp) lastp.Link = nil s.Text = firstp.Link } func nofollow(a obj.As) bool { switch a { case obj.AJMP, obj.ARET, AIRETL, AIRETQ, AIRETW, ARETFL, ARETFQ, ARETFW, obj.AUNDEF: return true } return false } func pushpop(a obj.As) bool { switch a { case APUSHL, APUSHFL, APUSHQ, APUSHFQ, APUSHW, APUSHFW, APOPL, APOPFL, APOPQ, APOPFQ, APOPW, APOPFW: return true } return false } func relinv(a obj.As) obj.As { switch a { case AJEQ: return AJNE case AJNE: return AJEQ case AJLE: return AJGT case AJLS: return AJHI case AJLT: return AJGE case AJMI: return AJPL case AJGE: return AJLT case AJPL: return AJMI case AJGT: return AJLE case AJHI: return AJLS case AJCS: return AJCC case AJCC: return AJCS case AJPS: return AJPC case AJPC: return AJPS case AJOS: return AJOC case AJOC: return AJOS } log.Fatalf("unknown relation: %s", a) return 0 } func xfol(ctxt *obj.Link, p *obj.Prog, last **obj.Prog) { var q *obj.Prog var i int var a obj.As loop: if p == nil { return } if p.As == obj.AJMP { q = p.Pcond if q != nil && q.As != obj.ATEXT { /* mark instruction as done and continue layout at target of jump */ p.Mark |= DONE p = q if p.Mark&DONE == 0 { goto loop } } } if p.Mark&DONE != 0 { /* * p goes here, but already used it elsewhere. * copy up to 4 instructions or else branch to other copy. */ i = 0 q = p for ; i < 4; i, q = i+1, q.Link { if q == nil { break } if q == *last { break } a = q.As if a == obj.ANOP { i-- continue } if nofollow(a) || pushpop(a) { break // NOTE(rsc): arm does goto copy } if q.Pcond == nil || q.Pcond.Mark&DONE != 0 { continue } if a == obj.ACALL || a == ALOOP { continue } for { if p.As == obj.ANOP { p = p.Link continue } q = obj.Copyp(ctxt, p) p = p.Link q.Mark |= DONE (*last).Link = q *last = q if q.As != a || q.Pcond == nil || q.Pcond.Mark&DONE != 0 { continue } q.As = relinv(q.As) p = q.Pcond q.Pcond = q.Link q.Link = p xfol(ctxt, q.Link, last) p = q.Link if p.Mark&DONE != 0 { return } goto loop /* */ } } q = ctxt.NewProg() q.As = obj.AJMP q.Lineno = p.Lineno q.To.Type = obj.TYPE_BRANCH q.To.Offset = p.Pc q.Pcond = p p = q } /* emit p */ p.Mark |= DONE (*last).Link = p *last = p a = p.As /* continue loop with what comes after p */ if nofollow(a) { return } if p.Pcond != nil && a != obj.ACALL { /* * some kind of conditional branch. * recurse to follow one path. * continue loop on the other. */ q = obj.Brchain(ctxt, p.Pcond) if q != nil { p.Pcond = q } q = obj.Brchain(ctxt, p.Link) if q != nil { p.Link = q } if p.From.Type == obj.TYPE_CONST { if p.From.Offset == 1 { /* * expect conditional jump to be taken. * rewrite so that's the fall-through case. */ p.As = relinv(a) q = p.Link p.Link = p.Pcond p.Pcond = q } } else { q = p.Link if q.Mark&DONE != 0 { if a != ALOOP { p.As = relinv(a) p.Link = p.Pcond p.Pcond = q } } } xfol(ctxt, p.Link, last) if p.Pcond.Mark&DONE != 0 { return } p = p.Pcond goto loop } p = p.Link goto loop } var unaryDst = map[obj.As]bool{ ABSWAPL: true, ABSWAPQ: true, ACMPXCHG8B: true, ADECB: true, ADECL: true, ADECQ: true, ADECW: true, AINCB: true, AINCL: true, AINCQ: true, AINCW: true, ANEGB: true, ANEGL: true, ANEGQ: true, ANEGW: true, ANOTB: true, ANOTL: true, ANOTQ: true, ANOTW: true, APOPL: true, APOPQ: true, APOPW: true, ASETCC: true, ASETCS: true, ASETEQ: true, ASETGE: true, ASETGT: true, ASETHI: true, ASETLE: true, ASETLS: true, ASETLT: true, ASETMI: true, ASETNE: true, ASETOC: true, ASETOS: true, ASETPC: true, ASETPL: true, ASETPS: true, AFFREE: true, AFLDENV: true, AFSAVE: true, AFSTCW: true, AFSTENV: true, AFSTSW: true, AFXSAVE: true, AFXSAVE64: true, ASTMXCSR: true, } var Linkamd64 = obj.LinkArch{ Arch: sys.ArchAMD64, Preprocess: preprocess, Assemble: span6, Follow: follow, Progedit: progedit, UnaryDst: unaryDst, } var Linkamd64p32 = obj.LinkArch{ Arch: sys.ArchAMD64P32, Preprocess: preprocess, Assemble: span6, Follow: follow, Progedit: progedit, UnaryDst: unaryDst, } var Link386 = obj.LinkArch{ Arch: sys.Arch386, Preprocess: preprocess, Assemble: span6, Follow: follow, Progedit: progedit, UnaryDst: unaryDst, }