mirror of
https://github.com/cwinfo/matterbridge.git
synced 2024-11-22 21:50:28 +00:00
284 lines
9.2 KiB
Go
284 lines
9.2 KiB
Go
// Copyright 2017 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package argon2 implements the key derivation function Argon2.
|
|
// Argon2 was selected as the winner of the Password Hashing Competition and can
|
|
// be used to derive cryptographic keys from passwords.
|
|
//
|
|
// For a detailed specification of Argon2 see [1].
|
|
//
|
|
// If you aren't sure which function you need, use Argon2id (IDKey) and
|
|
// the parameter recommendations for your scenario.
|
|
//
|
|
// # Argon2i
|
|
//
|
|
// Argon2i (implemented by Key) is the side-channel resistant version of Argon2.
|
|
// It uses data-independent memory access, which is preferred for password
|
|
// hashing and password-based key derivation. Argon2i requires more passes over
|
|
// memory than Argon2id to protect from trade-off attacks. The recommended
|
|
// parameters (taken from [2]) for non-interactive operations are time=3 and to
|
|
// use the maximum available memory.
|
|
//
|
|
// # Argon2id
|
|
//
|
|
// Argon2id (implemented by IDKey) is a hybrid version of Argon2 combining
|
|
// Argon2i and Argon2d. It uses data-independent memory access for the first
|
|
// half of the first iteration over the memory and data-dependent memory access
|
|
// for the rest. Argon2id is side-channel resistant and provides better brute-
|
|
// force cost savings due to time-memory tradeoffs than Argon2i. The recommended
|
|
// parameters for non-interactive operations (taken from [2]) are time=1 and to
|
|
// use the maximum available memory.
|
|
//
|
|
// [1] https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf
|
|
// [2] https://tools.ietf.org/html/draft-irtf-cfrg-argon2-03#section-9.3
|
|
package argon2
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"sync"
|
|
|
|
"golang.org/x/crypto/blake2b"
|
|
)
|
|
|
|
// The Argon2 version implemented by this package.
|
|
const Version = 0x13
|
|
|
|
const (
|
|
argon2d = iota
|
|
argon2i
|
|
argon2id
|
|
)
|
|
|
|
// Key derives a key from the password, salt, and cost parameters using Argon2i
|
|
// returning a byte slice of length keyLen that can be used as cryptographic
|
|
// key. The CPU cost and parallelism degree must be greater than zero.
|
|
//
|
|
// For example, you can get a derived key for e.g. AES-256 (which needs a
|
|
// 32-byte key) by doing:
|
|
//
|
|
// key := argon2.Key([]byte("some password"), salt, 3, 32*1024, 4, 32)
|
|
//
|
|
// The draft RFC recommends[2] time=3, and memory=32*1024 is a sensible number.
|
|
// If using that amount of memory (32 MB) is not possible in some contexts then
|
|
// the time parameter can be increased to compensate.
|
|
//
|
|
// The time parameter specifies the number of passes over the memory and the
|
|
// memory parameter specifies the size of the memory in KiB. For example
|
|
// memory=32*1024 sets the memory cost to ~32 MB. The number of threads can be
|
|
// adjusted to the number of available CPUs. The cost parameters should be
|
|
// increased as memory latency and CPU parallelism increases. Remember to get a
|
|
// good random salt.
|
|
func Key(password, salt []byte, time, memory uint32, threads uint8, keyLen uint32) []byte {
|
|
return deriveKey(argon2i, password, salt, nil, nil, time, memory, threads, keyLen)
|
|
}
|
|
|
|
// IDKey derives a key from the password, salt, and cost parameters using
|
|
// Argon2id returning a byte slice of length keyLen that can be used as
|
|
// cryptographic key. The CPU cost and parallelism degree must be greater than
|
|
// zero.
|
|
//
|
|
// For example, you can get a derived key for e.g. AES-256 (which needs a
|
|
// 32-byte key) by doing:
|
|
//
|
|
// key := argon2.IDKey([]byte("some password"), salt, 1, 64*1024, 4, 32)
|
|
//
|
|
// The draft RFC recommends[2] time=1, and memory=64*1024 is a sensible number.
|
|
// If using that amount of memory (64 MB) is not possible in some contexts then
|
|
// the time parameter can be increased to compensate.
|
|
//
|
|
// The time parameter specifies the number of passes over the memory and the
|
|
// memory parameter specifies the size of the memory in KiB. For example
|
|
// memory=64*1024 sets the memory cost to ~64 MB. The number of threads can be
|
|
// adjusted to the numbers of available CPUs. The cost parameters should be
|
|
// increased as memory latency and CPU parallelism increases. Remember to get a
|
|
// good random salt.
|
|
func IDKey(password, salt []byte, time, memory uint32, threads uint8, keyLen uint32) []byte {
|
|
return deriveKey(argon2id, password, salt, nil, nil, time, memory, threads, keyLen)
|
|
}
|
|
|
|
func deriveKey(mode int, password, salt, secret, data []byte, time, memory uint32, threads uint8, keyLen uint32) []byte {
|
|
if time < 1 {
|
|
panic("argon2: number of rounds too small")
|
|
}
|
|
if threads < 1 {
|
|
panic("argon2: parallelism degree too low")
|
|
}
|
|
h0 := initHash(password, salt, secret, data, time, memory, uint32(threads), keyLen, mode)
|
|
|
|
memory = memory / (syncPoints * uint32(threads)) * (syncPoints * uint32(threads))
|
|
if memory < 2*syncPoints*uint32(threads) {
|
|
memory = 2 * syncPoints * uint32(threads)
|
|
}
|
|
B := initBlocks(&h0, memory, uint32(threads))
|
|
processBlocks(B, time, memory, uint32(threads), mode)
|
|
return extractKey(B, memory, uint32(threads), keyLen)
|
|
}
|
|
|
|
const (
|
|
blockLength = 128
|
|
syncPoints = 4
|
|
)
|
|
|
|
type block [blockLength]uint64
|
|
|
|
func initHash(password, salt, key, data []byte, time, memory, threads, keyLen uint32, mode int) [blake2b.Size + 8]byte {
|
|
var (
|
|
h0 [blake2b.Size + 8]byte
|
|
params [24]byte
|
|
tmp [4]byte
|
|
)
|
|
|
|
b2, _ := blake2b.New512(nil)
|
|
binary.LittleEndian.PutUint32(params[0:4], threads)
|
|
binary.LittleEndian.PutUint32(params[4:8], keyLen)
|
|
binary.LittleEndian.PutUint32(params[8:12], memory)
|
|
binary.LittleEndian.PutUint32(params[12:16], time)
|
|
binary.LittleEndian.PutUint32(params[16:20], uint32(Version))
|
|
binary.LittleEndian.PutUint32(params[20:24], uint32(mode))
|
|
b2.Write(params[:])
|
|
binary.LittleEndian.PutUint32(tmp[:], uint32(len(password)))
|
|
b2.Write(tmp[:])
|
|
b2.Write(password)
|
|
binary.LittleEndian.PutUint32(tmp[:], uint32(len(salt)))
|
|
b2.Write(tmp[:])
|
|
b2.Write(salt)
|
|
binary.LittleEndian.PutUint32(tmp[:], uint32(len(key)))
|
|
b2.Write(tmp[:])
|
|
b2.Write(key)
|
|
binary.LittleEndian.PutUint32(tmp[:], uint32(len(data)))
|
|
b2.Write(tmp[:])
|
|
b2.Write(data)
|
|
b2.Sum(h0[:0])
|
|
return h0
|
|
}
|
|
|
|
func initBlocks(h0 *[blake2b.Size + 8]byte, memory, threads uint32) []block {
|
|
var block0 [1024]byte
|
|
B := make([]block, memory)
|
|
for lane := uint32(0); lane < threads; lane++ {
|
|
j := lane * (memory / threads)
|
|
binary.LittleEndian.PutUint32(h0[blake2b.Size+4:], lane)
|
|
|
|
binary.LittleEndian.PutUint32(h0[blake2b.Size:], 0)
|
|
blake2bHash(block0[:], h0[:])
|
|
for i := range B[j+0] {
|
|
B[j+0][i] = binary.LittleEndian.Uint64(block0[i*8:])
|
|
}
|
|
|
|
binary.LittleEndian.PutUint32(h0[blake2b.Size:], 1)
|
|
blake2bHash(block0[:], h0[:])
|
|
for i := range B[j+1] {
|
|
B[j+1][i] = binary.LittleEndian.Uint64(block0[i*8:])
|
|
}
|
|
}
|
|
return B
|
|
}
|
|
|
|
func processBlocks(B []block, time, memory, threads uint32, mode int) {
|
|
lanes := memory / threads
|
|
segments := lanes / syncPoints
|
|
|
|
processSegment := func(n, slice, lane uint32, wg *sync.WaitGroup) {
|
|
var addresses, in, zero block
|
|
if mode == argon2i || (mode == argon2id && n == 0 && slice < syncPoints/2) {
|
|
in[0] = uint64(n)
|
|
in[1] = uint64(lane)
|
|
in[2] = uint64(slice)
|
|
in[3] = uint64(memory)
|
|
in[4] = uint64(time)
|
|
in[5] = uint64(mode)
|
|
}
|
|
|
|
index := uint32(0)
|
|
if n == 0 && slice == 0 {
|
|
index = 2 // we have already generated the first two blocks
|
|
if mode == argon2i || mode == argon2id {
|
|
in[6]++
|
|
processBlock(&addresses, &in, &zero)
|
|
processBlock(&addresses, &addresses, &zero)
|
|
}
|
|
}
|
|
|
|
offset := lane*lanes + slice*segments + index
|
|
var random uint64
|
|
for index < segments {
|
|
prev := offset - 1
|
|
if index == 0 && slice == 0 {
|
|
prev += lanes // last block in lane
|
|
}
|
|
if mode == argon2i || (mode == argon2id && n == 0 && slice < syncPoints/2) {
|
|
if index%blockLength == 0 {
|
|
in[6]++
|
|
processBlock(&addresses, &in, &zero)
|
|
processBlock(&addresses, &addresses, &zero)
|
|
}
|
|
random = addresses[index%blockLength]
|
|
} else {
|
|
random = B[prev][0]
|
|
}
|
|
newOffset := indexAlpha(random, lanes, segments, threads, n, slice, lane, index)
|
|
processBlockXOR(&B[offset], &B[prev], &B[newOffset])
|
|
index, offset = index+1, offset+1
|
|
}
|
|
wg.Done()
|
|
}
|
|
|
|
for n := uint32(0); n < time; n++ {
|
|
for slice := uint32(0); slice < syncPoints; slice++ {
|
|
var wg sync.WaitGroup
|
|
for lane := uint32(0); lane < threads; lane++ {
|
|
wg.Add(1)
|
|
go processSegment(n, slice, lane, &wg)
|
|
}
|
|
wg.Wait()
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
func extractKey(B []block, memory, threads, keyLen uint32) []byte {
|
|
lanes := memory / threads
|
|
for lane := uint32(0); lane < threads-1; lane++ {
|
|
for i, v := range B[(lane*lanes)+lanes-1] {
|
|
B[memory-1][i] ^= v
|
|
}
|
|
}
|
|
|
|
var block [1024]byte
|
|
for i, v := range B[memory-1] {
|
|
binary.LittleEndian.PutUint64(block[i*8:], v)
|
|
}
|
|
key := make([]byte, keyLen)
|
|
blake2bHash(key, block[:])
|
|
return key
|
|
}
|
|
|
|
func indexAlpha(rand uint64, lanes, segments, threads, n, slice, lane, index uint32) uint32 {
|
|
refLane := uint32(rand>>32) % threads
|
|
if n == 0 && slice == 0 {
|
|
refLane = lane
|
|
}
|
|
m, s := 3*segments, ((slice+1)%syncPoints)*segments
|
|
if lane == refLane {
|
|
m += index
|
|
}
|
|
if n == 0 {
|
|
m, s = slice*segments, 0
|
|
if slice == 0 || lane == refLane {
|
|
m += index
|
|
}
|
|
}
|
|
if index == 0 || lane == refLane {
|
|
m--
|
|
}
|
|
return phi(rand, uint64(m), uint64(s), refLane, lanes)
|
|
}
|
|
|
|
func phi(rand, m, s uint64, lane, lanes uint32) uint32 {
|
|
p := rand & 0xFFFFFFFF
|
|
p = (p * p) >> 32
|
|
p = (p * m) >> 32
|
|
return lane*lanes + uint32((s+m-(p+1))%uint64(lanes))
|
|
}
|