5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2024-11-27 00:51:36 +00:00
matterbridge/vendor/golang.org/x/sys/unix/affinity_linux.go
cori hudson 921f2dfcdf Add initial Keybase Chat support (#877)
* initial work on native keybase bridging

* Hopefully make a functional keybase bridge

* add keybase to bridgemap

* send to right channel, try to figure out received msgs

* add account and userid

* i am a Dam Fool

* Fix formatting for messages, handle /me

* update vendors, ran golint and goimports

* move handlers to handlers.go, clean up unused config options

* add sample config, fix inconsistent remote nick handling

* Update readme with keybase links

* Resolve fixmie errors

* Error -> Errorf

* fix linting errors in go.mod and go.sum

* explicitly join channels, ignore messages from non-specified channels

* check that team names match before bridging message
2019-08-26 21:00:31 +02:00

129 lines
3.3 KiB
Go

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// CPU affinity functions
package unix
import (
"unsafe"
)
const cpuSetSize = _CPU_SETSIZE / _NCPUBITS
// CPUSet represents a CPU affinity mask.
type CPUSet [cpuSetSize]cpuMask
func schedAffinity(trap uintptr, pid int, set *CPUSet) error {
_, _, e := RawSyscall(trap, uintptr(pid), uintptr(unsafe.Sizeof(*set)), uintptr(unsafe.Pointer(set)))
if e != 0 {
return errnoErr(e)
}
return nil
}
// SchedGetaffinity gets the CPU affinity mask of the thread specified by pid.
// If pid is 0 the calling thread is used.
func SchedGetaffinity(pid int, set *CPUSet) error {
return schedAffinity(SYS_SCHED_GETAFFINITY, pid, set)
}
// SchedSetaffinity sets the CPU affinity mask of the thread specified by pid.
// If pid is 0 the calling thread is used.
func SchedSetaffinity(pid int, set *CPUSet) error {
return schedAffinity(SYS_SCHED_SETAFFINITY, pid, set)
}
// Zero clears the set s, so that it contains no CPUs.
func (s *CPUSet) Zero() {
for i := range s {
s[i] = 0
}
}
func cpuBitsIndex(cpu int) int {
return cpu / _NCPUBITS
}
func cpuBitsMask(cpu int) cpuMask {
return cpuMask(1 << (uint(cpu) % _NCPUBITS))
}
// Set adds cpu to the set s.
func (s *CPUSet) Set(cpu int) {
i := cpuBitsIndex(cpu)
if i < len(s) {
s[i] |= cpuBitsMask(cpu)
}
}
// Clear removes cpu from the set s.
func (s *CPUSet) Clear(cpu int) {
i := cpuBitsIndex(cpu)
if i < len(s) {
s[i] &^= cpuBitsMask(cpu)
}
}
// IsSet reports whether cpu is in the set s.
func (s *CPUSet) IsSet(cpu int) bool {
i := cpuBitsIndex(cpu)
if i < len(s) {
return s[i]&cpuBitsMask(cpu) != 0
}
return false
}
// Count returns the number of CPUs in the set s.
func (s *CPUSet) Count() int {
c := 0
for _, b := range s {
c += onesCount64(uint64(b))
}
return c
}
// onesCount64 is a copy of Go 1.9's math/bits.OnesCount64.
// Once this package can require Go 1.9, we can delete this
// and update the caller to use bits.OnesCount64.
func onesCount64(x uint64) int {
const m0 = 0x5555555555555555 // 01010101 ...
const m1 = 0x3333333333333333 // 00110011 ...
const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...
// Unused in this function, but definitions preserved for
// documentation purposes:
//
// const m3 = 0x00ff00ff00ff00ff // etc.
// const m4 = 0x0000ffff0000ffff
//
// Implementation: Parallel summing of adjacent bits.
// See "Hacker's Delight", Chap. 5: Counting Bits.
// The following pattern shows the general approach:
//
// x = x>>1&(m0&m) + x&(m0&m)
// x = x>>2&(m1&m) + x&(m1&m)
// x = x>>4&(m2&m) + x&(m2&m)
// x = x>>8&(m3&m) + x&(m3&m)
// x = x>>16&(m4&m) + x&(m4&m)
// x = x>>32&(m5&m) + x&(m5&m)
// return int(x)
//
// Masking (& operations) can be left away when there's no
// danger that a field's sum will carry over into the next
// field: Since the result cannot be > 64, 8 bits is enough
// and we can ignore the masks for the shifts by 8 and up.
// Per "Hacker's Delight", the first line can be simplified
// more, but it saves at best one instruction, so we leave
// it alone for clarity.
const m = 1<<64 - 1
x = x>>1&(m0&m) + x&(m0&m)
x = x>>2&(m1&m) + x&(m1&m)
x = (x>>4 + x) & (m2 & m)
x += x >> 8
x += x >> 16
x += x >> 32
return int(x) & (1<<7 - 1)
}