5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2025-01-13 23:16:29 +00:00
matterbridge/vendor/filippo.io/edwards25519/field/fe.go
2022-03-20 14:57:48 +01:00

420 lines
12 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package field implements fast arithmetic modulo 2^255-19.
package field
import (
"crypto/subtle"
"encoding/binary"
"errors"
"math/bits"
)
// Element represents an element of the field GF(2^255-19). Note that this
// is not a cryptographically secure group, and should only be used to interact
// with edwards25519.Point coordinates.
//
// This type works similarly to math/big.Int, and all arguments and receivers
// are allowed to alias.
//
// The zero value is a valid zero element.
type Element struct {
// An element t represents the integer
// t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204
//
// Between operations, all limbs are expected to be lower than 2^52.
l0 uint64
l1 uint64
l2 uint64
l3 uint64
l4 uint64
}
const maskLow51Bits uint64 = (1 << 51) - 1
var feZero = &Element{0, 0, 0, 0, 0}
// Zero sets v = 0, and returns v.
func (v *Element) Zero() *Element {
*v = *feZero
return v
}
var feOne = &Element{1, 0, 0, 0, 0}
// One sets v = 1, and returns v.
func (v *Element) One() *Element {
*v = *feOne
return v
}
// reduce reduces v modulo 2^255 - 19 and returns it.
func (v *Element) reduce() *Element {
v.carryPropagate()
// After the light reduction we now have a field element representation
// v < 2^255 + 2^13 * 19, but need v < 2^255 - 19.
// If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1,
// generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise.
c := (v.l0 + 19) >> 51
c = (v.l1 + c) >> 51
c = (v.l2 + c) >> 51
c = (v.l3 + c) >> 51
c = (v.l4 + c) >> 51
// If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's
// effectively applying the reduction identity to the carry.
v.l0 += 19 * c
v.l1 += v.l0 >> 51
v.l0 = v.l0 & maskLow51Bits
v.l2 += v.l1 >> 51
v.l1 = v.l1 & maskLow51Bits
v.l3 += v.l2 >> 51
v.l2 = v.l2 & maskLow51Bits
v.l4 += v.l3 >> 51
v.l3 = v.l3 & maskLow51Bits
// no additional carry
v.l4 = v.l4 & maskLow51Bits
return v
}
// Add sets v = a + b, and returns v.
func (v *Element) Add(a, b *Element) *Element {
v.l0 = a.l0 + b.l0
v.l1 = a.l1 + b.l1
v.l2 = a.l2 + b.l2
v.l3 = a.l3 + b.l3
v.l4 = a.l4 + b.l4
// Using the generic implementation here is actually faster than the
// assembly. Probably because the body of this function is so simple that
// the compiler can figure out better optimizations by inlining the carry
// propagation.
return v.carryPropagateGeneric()
}
// Subtract sets v = a - b, and returns v.
func (v *Element) Subtract(a, b *Element) *Element {
// We first add 2 * p, to guarantee the subtraction won't underflow, and
// then subtract b (which can be up to 2^255 + 2^13 * 19).
v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0
v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1
v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2
v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3
v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4
return v.carryPropagate()
}
// Negate sets v = -a, and returns v.
func (v *Element) Negate(a *Element) *Element {
return v.Subtract(feZero, a)
}
// Invert sets v = 1/z mod p, and returns v.
//
// If z == 0, Invert returns v = 0.
func (v *Element) Invert(z *Element) *Element {
// Inversion is implemented as exponentiation with exponent p 2. It uses the
// same sequence of 255 squarings and 11 multiplications as [Curve25519].
var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element
z2.Square(z) // 2
t.Square(&z2) // 4
t.Square(&t) // 8
z9.Multiply(&t, z) // 9
z11.Multiply(&z9, &z2) // 11
t.Square(&z11) // 22
z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0
t.Square(&z2_5_0) // 2^6 - 2^1
for i := 0; i < 4; i++ {
t.Square(&t) // 2^10 - 2^5
}
z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0
t.Square(&z2_10_0) // 2^11 - 2^1
for i := 0; i < 9; i++ {
t.Square(&t) // 2^20 - 2^10
}
z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0
t.Square(&z2_20_0) // 2^21 - 2^1
for i := 0; i < 19; i++ {
t.Square(&t) // 2^40 - 2^20
}
t.Multiply(&t, &z2_20_0) // 2^40 - 2^0
t.Square(&t) // 2^41 - 2^1
for i := 0; i < 9; i++ {
t.Square(&t) // 2^50 - 2^10
}
z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0
t.Square(&z2_50_0) // 2^51 - 2^1
for i := 0; i < 49; i++ {
t.Square(&t) // 2^100 - 2^50
}
z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0
t.Square(&z2_100_0) // 2^101 - 2^1
for i := 0; i < 99; i++ {
t.Square(&t) // 2^200 - 2^100
}
t.Multiply(&t, &z2_100_0) // 2^200 - 2^0
t.Square(&t) // 2^201 - 2^1
for i := 0; i < 49; i++ {
t.Square(&t) // 2^250 - 2^50
}
t.Multiply(&t, &z2_50_0) // 2^250 - 2^0
t.Square(&t) // 2^251 - 2^1
t.Square(&t) // 2^252 - 2^2
t.Square(&t) // 2^253 - 2^3
t.Square(&t) // 2^254 - 2^4
t.Square(&t) // 2^255 - 2^5
return v.Multiply(&t, &z11) // 2^255 - 21
}
// Set sets v = a, and returns v.
func (v *Element) Set(a *Element) *Element {
*v = *a
return v
}
// SetBytes sets v to x, where x is a 32-byte little-endian encoding. If x is
// not of the right length, SetUniformBytes returns nil and an error, and the
// receiver is unchanged.
//
// Consistent with RFC 7748, the most significant bit (the high bit of the
// last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
// are accepted. Note that this is laxer than specified by RFC 8032.
func (v *Element) SetBytes(x []byte) (*Element, error) {
if len(x) != 32 {
return nil, errors.New("edwards25519: invalid field element input size")
}
// Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51).
v.l0 = binary.LittleEndian.Uint64(x[0:8])
v.l0 &= maskLow51Bits
// Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51).
v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3
v.l1 &= maskLow51Bits
// Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51).
v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6
v.l2 &= maskLow51Bits
// Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51).
v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1
v.l3 &= maskLow51Bits
// Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51).
// Note: not bytes 25:33, shift 4, to avoid overread.
v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12
v.l4 &= maskLow51Bits
return v, nil
}
// Bytes returns the canonical 32-byte little-endian encoding of v.
func (v *Element) Bytes() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [32]byte
return v.bytes(&out)
}
func (v *Element) bytes(out *[32]byte) []byte {
t := *v
t.reduce()
var buf [8]byte
for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} {
bitsOffset := i * 51
binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8))
for i, bb := range buf {
off := bitsOffset/8 + i
if off >= len(out) {
break
}
out[off] |= bb
}
}
return out[:]
}
// Equal returns 1 if v and u are equal, and 0 otherwise.
func (v *Element) Equal(u *Element) int {
sa, sv := u.Bytes(), v.Bytes()
return subtle.ConstantTimeCompare(sa, sv)
}
// mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise.
func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) }
// Select sets v to a if cond == 1, and to b if cond == 0.
func (v *Element) Select(a, b *Element, cond int) *Element {
m := mask64Bits(cond)
v.l0 = (m & a.l0) | (^m & b.l0)
v.l1 = (m & a.l1) | (^m & b.l1)
v.l2 = (m & a.l2) | (^m & b.l2)
v.l3 = (m & a.l3) | (^m & b.l3)
v.l4 = (m & a.l4) | (^m & b.l4)
return v
}
// Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v.
func (v *Element) Swap(u *Element, cond int) {
m := mask64Bits(cond)
t := m & (v.l0 ^ u.l0)
v.l0 ^= t
u.l0 ^= t
t = m & (v.l1 ^ u.l1)
v.l1 ^= t
u.l1 ^= t
t = m & (v.l2 ^ u.l2)
v.l2 ^= t
u.l2 ^= t
t = m & (v.l3 ^ u.l3)
v.l3 ^= t
u.l3 ^= t
t = m & (v.l4 ^ u.l4)
v.l4 ^= t
u.l4 ^= t
}
// IsNegative returns 1 if v is negative, and 0 otherwise.
func (v *Element) IsNegative() int {
return int(v.Bytes()[0] & 1)
}
// Absolute sets v to |u|, and returns v.
func (v *Element) Absolute(u *Element) *Element {
return v.Select(new(Element).Negate(u), u, u.IsNegative())
}
// Multiply sets v = x * y, and returns v.
func (v *Element) Multiply(x, y *Element) *Element {
feMul(v, x, y)
return v
}
// Square sets v = x * x, and returns v.
func (v *Element) Square(x *Element) *Element {
feSquare(v, x)
return v
}
// Mult32 sets v = x * y, and returns v.
func (v *Element) Mult32(x *Element, y uint32) *Element {
x0lo, x0hi := mul51(x.l0, y)
x1lo, x1hi := mul51(x.l1, y)
x2lo, x2hi := mul51(x.l2, y)
x3lo, x3hi := mul51(x.l3, y)
x4lo, x4hi := mul51(x.l4, y)
v.l0 = x0lo + 19*x4hi // carried over per the reduction identity
v.l1 = x1lo + x0hi
v.l2 = x2lo + x1hi
v.l3 = x3lo + x2hi
v.l4 = x4lo + x3hi
// The hi portions are going to be only 32 bits, plus any previous excess,
// so we can skip the carry propagation.
return v
}
// mul51 returns lo + hi * 2⁵¹ = a * b.
func mul51(a uint64, b uint32) (lo uint64, hi uint64) {
mh, ml := bits.Mul64(a, uint64(b))
lo = ml & maskLow51Bits
hi = (mh << 13) | (ml >> 51)
return
}
// Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3.
func (v *Element) Pow22523(x *Element) *Element {
var t0, t1, t2 Element
t0.Square(x) // x^2
t1.Square(&t0) // x^4
t1.Square(&t1) // x^8
t1.Multiply(x, &t1) // x^9
t0.Multiply(&t0, &t1) // x^11
t0.Square(&t0) // x^22
t0.Multiply(&t1, &t0) // x^31
t1.Square(&t0) // x^62
for i := 1; i < 5; i++ { // x^992
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // x^1023 -> 1023 = 2^10 - 1
t1.Square(&t0) // 2^11 - 2
for i := 1; i < 10; i++ { // 2^20 - 2^10
t1.Square(&t1)
}
t1.Multiply(&t1, &t0) // 2^20 - 1
t2.Square(&t1) // 2^21 - 2
for i := 1; i < 20; i++ { // 2^40 - 2^20
t2.Square(&t2)
}
t1.Multiply(&t2, &t1) // 2^40 - 1
t1.Square(&t1) // 2^41 - 2
for i := 1; i < 10; i++ { // 2^50 - 2^10
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // 2^50 - 1
t1.Square(&t0) // 2^51 - 2
for i := 1; i < 50; i++ { // 2^100 - 2^50
t1.Square(&t1)
}
t1.Multiply(&t1, &t0) // 2^100 - 1
t2.Square(&t1) // 2^101 - 2
for i := 1; i < 100; i++ { // 2^200 - 2^100
t2.Square(&t2)
}
t1.Multiply(&t2, &t1) // 2^200 - 1
t1.Square(&t1) // 2^201 - 2
for i := 1; i < 50; i++ { // 2^250 - 2^50
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // 2^250 - 1
t0.Square(&t0) // 2^251 - 2
t0.Square(&t0) // 2^252 - 4
return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3)
}
// sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion.
var sqrtM1 = &Element{1718705420411056, 234908883556509,
2233514472574048, 2117202627021982, 765476049583133}
// SqrtRatio sets r to the non-negative square root of the ratio of u and v.
//
// If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio
// sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00,
// and returns r and 0.
func (r *Element) SqrtRatio(u, v *Element) (rr *Element, wasSquare int) {
var a, b Element
// r = (u * v3) * (u * v7)^((p-5)/8)
v2 := a.Square(v)
uv3 := b.Multiply(u, b.Multiply(v2, v))
uv7 := a.Multiply(uv3, a.Square(v2))
r.Multiply(uv3, r.Pow22523(uv7))
check := a.Multiply(v, a.Square(r)) // check = v * r^2
uNeg := b.Negate(u)
correctSignSqrt := check.Equal(u)
flippedSignSqrt := check.Equal(uNeg)
flippedSignSqrtI := check.Equal(uNeg.Multiply(uNeg, sqrtM1))
rPrime := b.Multiply(r, sqrtM1) // r_prime = SQRT_M1 * r
// r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
r.Select(rPrime, r, flippedSignSqrt|flippedSignSqrtI)
r.Absolute(r) // Choose the nonnegative square root.
return r, correctSignSqrt | flippedSignSqrt
}