5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2024-11-25 07:31:35 +00:00
matterbridge/vendor/github.com/Benau/go_rlottie/lottie_lottiemodel.cpp
Benau 53cafa9f3d
Convert .tgs with go libraries (and cgo) (telegram) (#1569)
This commit adds support for go/cgo tgs conversion when building with the -tags `cgo`
The default binaries are still "pure" go and uses the old way of converting.

* Move lottie_convert.py conversion code to its own file

* Add optional libtgsconverter

* Update vendor

* Apply suggestions from code review

* Update bridge/helper/libtgsconverter.go

Co-authored-by: Wim <wim@42.be>
2021-08-24 22:32:50 +02:00

391 lines
13 KiB
C++

/*
* Copyright (c) 2020 Samsung Electronics Co., Ltd. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "lottie_lottiemodel.h"
#include <cassert>
#include <iterator>
#include <stack>
#include "vector_vimageloader.h"
#include "vector_vline.h"
using namespace rlottie::internal;
/*
* We process the iterator objects in the children list
* by iterating from back to front. when we find a repeater object
* we remove the objects from satrt till repeater object and then place
* under a new shape group object which we add it as children to the repeater
* object.
* Then we visit the childrens of the newly created shape group object to
* process the remaining repeater object(when children list contains more than
* one repeater).
*
*/
class LottieRepeaterProcesser {
public:
void visitChildren(model::Group *obj)
{
for (auto i = obj->mChildren.rbegin(); i != obj->mChildren.rend();
++i) {
auto child = (*i);
if (child->type() == model::Object::Type::Repeater) {
model::Repeater *repeater =
static_cast<model::Repeater *>(child);
// check if this repeater is already processed
// can happen if the layer is an asset and referenced by
// multiple layer.
if (repeater->processed()) continue;
repeater->markProcessed();
auto content = repeater->content();
// 1. increment the reverse iterator to point to the
// object before the repeater
++i;
// 2. move all the children till repater to the group
std::move(obj->mChildren.begin(), i.base(),
back_inserter(content->mChildren));
// 3. erase the objects from the original children list
obj->mChildren.erase(obj->mChildren.begin(), i.base());
// 5. visit newly created group to process remaining repeater
// object.
visitChildren(content);
// 6. exit the loop as the current iterators are invalid
break;
}
visit(child);
}
}
void visit(model::Object *obj)
{
switch (obj->type()) {
case model::Object::Type::Group:
case model::Object::Type::Layer: {
visitChildren(static_cast<model::Group *>(obj));
break;
}
default:
break;
}
}
};
class LottieUpdateStatVisitor {
model::Composition::Stats *stat;
public:
explicit LottieUpdateStatVisitor(model::Composition::Stats *s) : stat(s) {}
void visitChildren(model::Group *obj)
{
for (const auto &child : obj->mChildren) {
if (child) visit(child);
}
}
void visitLayer(model::Layer *layer)
{
switch (layer->mLayerType) {
case model::Layer::Type::Precomp:
stat->precompLayerCount++;
break;
case model::Layer::Type::Null:
stat->nullLayerCount++;
break;
case model::Layer::Type::Shape:
stat->shapeLayerCount++;
break;
case model::Layer::Type::Solid:
stat->solidLayerCount++;
break;
case model::Layer::Type::Image:
stat->imageLayerCount++;
break;
default:
break;
}
visitChildren(layer);
}
void visit(model::Object *obj)
{
switch (obj->type()) {
case model::Object::Type::Layer: {
visitLayer(static_cast<model::Layer *>(obj));
break;
}
case model::Object::Type::Repeater: {
visitChildren(static_cast<model::Repeater *>(obj)->content());
break;
}
case model::Object::Type::Group: {
visitChildren(static_cast<model::Group *>(obj));
break;
}
default:
break;
}
}
};
void model::Composition::processRepeaterObjects()
{
LottieRepeaterProcesser visitor;
visitor.visit(mRootLayer);
}
void model::Composition::updateStats()
{
LottieUpdateStatVisitor visitor(&mStats);
visitor.visit(mRootLayer);
}
VMatrix model::Repeater::Transform::matrix(int frameNo, float multiplier) const
{
VPointF scale = mScale.value(frameNo) / 100.f;
scale.setX(std::pow(scale.x(), multiplier));
scale.setY(std::pow(scale.y(), multiplier));
VMatrix m;
m.translate(mPosition.value(frameNo) * multiplier)
.translate(mAnchor.value(frameNo))
.scale(scale)
.rotate(mRotation.value(frameNo) * multiplier)
.translate(-mAnchor.value(frameNo));
return m;
}
VMatrix model::Transform::Data::matrix(int frameNo, bool autoOrient) const
{
VMatrix m;
VPointF position;
if (mExtra && mExtra->mSeparate) {
position.setX(mExtra->mSeparateX.value(frameNo));
position.setY(mExtra->mSeparateY.value(frameNo));
} else {
position = mPosition.value(frameNo);
}
float angle = autoOrient ? mPosition.angle(frameNo) : 0;
if (mExtra && mExtra->m3DData) {
m.translate(position)
.rotate(mExtra->m3DRz.value(frameNo) + angle)
.rotate(mExtra->m3DRy.value(frameNo), VMatrix::Axis::Y)
.rotate(mExtra->m3DRx.value(frameNo), VMatrix::Axis::X)
.scale(mScale.value(frameNo) / 100.f)
.translate(-mAnchor.value(frameNo));
} else {
m.translate(position)
.rotate(mRotation.value(frameNo) + angle)
.scale(mScale.value(frameNo) / 100.f)
.translate(-mAnchor.value(frameNo));
}
return m;
}
void model::Dash::getDashInfo(int frameNo, std::vector<float> &result) const
{
result.clear();
if (mData.size() <= 1) return;
if (result.capacity() < mData.size()) result.reserve(mData.size() + 1);
for (const auto &elm : mData) result.push_back(elm.value(frameNo));
// if the size is even then we are missing last
// gap information which is same as the last dash value
// copy it from the last dash value.
// NOTE: last value is the offset and last-1 is the last dash value.
auto size = result.size();
if ((size % 2) == 0) {
// copy offset value to end.
result.push_back(result.back());
// copy dash value to gap.
result[size - 1] = result[size - 2];
}
}
/**
* Both the color stops and opacity stops are in the same array.
* There are {@link #colorPoints} colors sequentially as:
* [
* ...,
* position,
* red,
* green,
* blue,
* ...
* ]
*
* The remainder of the array is the opacity stops sequentially as:
* [
* ...,
* position,
* opacity,
* ...
* ]
*/
void model::Gradient::populate(VGradientStops &stops, int frameNo)
{
model::Gradient::Data gradData = mGradient.value(frameNo);
auto size = gradData.mGradient.size();
float * ptr = gradData.mGradient.data();
int colorPoints = mColorPoints;
if (colorPoints == -1) { // for legacy bodymovin (ref: lottie-android)
colorPoints = int(size / 4);
}
auto opacityArraySize = size - colorPoints * 4;
float *opacityPtr = ptr + (colorPoints * 4);
stops.clear();
size_t j = 0;
for (int i = 0; i < colorPoints; i++) {
float colorStop = ptr[0];
model::Color color = model::Color(ptr[1], ptr[2], ptr[3]);
if (opacityArraySize) {
if (j == opacityArraySize) {
// already reached the end
float stop1 = opacityPtr[j - 4];
float op1 = opacityPtr[j - 3];
float stop2 = opacityPtr[j - 2];
float op2 = opacityPtr[j - 1];
if (colorStop > stop2) {
stops.push_back(
std::make_pair(colorStop, color.toColor(op2)));
} else {
float progress = (colorStop - stop1) / (stop2 - stop1);
float opacity = op1 + progress * (op2 - op1);
stops.push_back(
std::make_pair(colorStop, color.toColor(opacity)));
}
continue;
}
for (; j < opacityArraySize; j += 2) {
float opacityStop = opacityPtr[j];
if (opacityStop < colorStop) {
// add a color using opacity stop
stops.push_back(std::make_pair(
opacityStop, color.toColor(opacityPtr[j + 1])));
continue;
}
// add a color using color stop
if (j == 0) {
stops.push_back(std::make_pair(
colorStop, color.toColor(opacityPtr[j + 1])));
} else {
float progress = (colorStop - opacityPtr[j - 2]) /
(opacityPtr[j] - opacityPtr[j - 2]);
float opacity =
opacityPtr[j - 1] +
progress * (opacityPtr[j + 1] - opacityPtr[j - 1]);
stops.push_back(
std::make_pair(colorStop, color.toColor(opacity)));
}
j += 2;
break;
}
} else {
stops.push_back(std::make_pair(colorStop, color.toColor()));
}
ptr += 4;
}
}
void model::Gradient::update(std::unique_ptr<VGradient> &grad, int frameNo)
{
bool init = false;
if (!grad) {
if (mGradientType == 1)
grad = std::make_unique<VGradient>(VGradient::Type::Linear);
else
grad = std::make_unique<VGradient>(VGradient::Type::Radial);
grad->mSpread = VGradient::Spread::Pad;
init = true;
}
if (!mGradient.isStatic() || init) {
populate(grad->mStops, frameNo);
}
if (mGradientType == 1) { // linear gradient
VPointF start = mStartPoint.value(frameNo);
VPointF end = mEndPoint.value(frameNo);
grad->linear.x1 = start.x();
grad->linear.y1 = start.y();
grad->linear.x2 = end.x();
grad->linear.y2 = end.y();
} else { // radial gradient
VPointF start = mStartPoint.value(frameNo);
VPointF end = mEndPoint.value(frameNo);
grad->radial.cx = start.x();
grad->radial.cy = start.y();
grad->radial.cradius =
VLine::length(start.x(), start.y(), end.x(), end.y());
/*
* Focal point is the point lives in highlight length distance from
* center along the line (start, end) and rotated by highlight angle.
* below calculation first finds the quadrant(angle) on which the point
* lives by applying inverse slope formula then adds the rotation angle
* to find the final angle. then point is retrived using circle equation
* of center, angle and distance.
*/
float progress = mHighlightLength.value(frameNo) / 100.0f;
if (vCompare(progress, 1.0f)) progress = 0.99f;
float startAngle = VLine(start, end).angle();
float highlightAngle = mHighlightAngle.value(frameNo);
static constexpr float K_PI = 3.1415926f;
float angle = (startAngle + highlightAngle) * (K_PI / 180.0f);
grad->radial.fx =
grad->radial.cx + std::cos(angle) * progress * grad->radial.cradius;
grad->radial.fy =
grad->radial.cy + std::sin(angle) * progress * grad->radial.cradius;
// Lottie dosen't have any focal radius concept.
grad->radial.fradius = 0;
}
}
void model::Asset::loadImageData(std::string data)
{
if (!data.empty())
mBitmap = VImageLoader::instance().load(data.c_str(), data.length());
}
void model::Asset::loadImagePath(std::string path)
{
if (!path.empty()) mBitmap = VImageLoader::instance().load(path.c_str());
}
std::vector<LayerInfo> model::Composition::layerInfoList() const
{
if (!mRootLayer || mRootLayer->mChildren.empty()) return {};
std::vector<LayerInfo> result;
result.reserve(mRootLayer->mChildren.size());
for (auto it : mRootLayer->mChildren) {
auto layer = static_cast<model::Layer *>(it);
result.emplace_back(layer->name(), layer->mInFrame, layer->mOutFrame);
}
return result;
}