5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2024-11-22 16:20:26 +00:00
matterbridge/vendor/github.com/sizeofint/webpanimation/utils_utils.c
Benau 53cafa9f3d
Convert .tgs with go libraries (and cgo) (telegram) (#1569)
This commit adds support for go/cgo tgs conversion when building with the -tags `cgo`
The default binaries are still "pure" go and uses the old way of converting.

* Move lottie_convert.py conversion code to its own file

* Add optional libtgsconverter

* Update vendor

* Apply suggestions from code review

* Update bridge/helper/libtgsconverter.go

Co-authored-by: Wim <wim@42.be>
2021-08-24 22:32:50 +02:00

336 lines
10 KiB
C

// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Misc. common utility functions
//
// Author: Skal (pascal.massimino@gmail.com)
#include <stdlib.h>
#include <string.h> // for memcpy()
#include "webp_decode.h"
#include "webp_encode.h"
#include "webp_format_constants.h"
#include "utils_color_cache_utils.h"
#include "utils_utils.h"
// If PRINT_MEM_INFO is defined, extra info (like total memory used, number of
// alloc/free etc) is printed. For debugging/tuning purpose only (it's slow,
// and not multi-thread safe!).
// An interesting alternative is valgrind's 'massif' tool:
// http://valgrind.org/docs/manual/ms-manual.html
// Here is an example command line:
/* valgrind --tool=massif --massif-out-file=massif.out \
--stacks=yes --alloc-fn=WebPSafeMalloc --alloc-fn=WebPSafeCalloc
ms_print massif.out
*/
// In addition:
// * if PRINT_MEM_TRAFFIC is defined, all the details of the malloc/free cycles
// are printed.
// * if MALLOC_FAIL_AT is defined, the global environment variable
// $MALLOC_FAIL_AT is used to simulate a memory error when calloc or malloc
// is called for the nth time. Example usage:
// export MALLOC_FAIL_AT=50 && ./examples/cwebp input.png
// * if MALLOC_LIMIT is defined, the global environment variable $MALLOC_LIMIT
// sets the maximum amount of memory (in bytes) made available to libwebp.
// This can be used to emulate environment with very limited memory.
// Example: export MALLOC_LIMIT=64000000 && ./examples/dwebp picture.webp
// #define PRINT_MEM_INFO
// #define PRINT_MEM_TRAFFIC
// #define MALLOC_FAIL_AT
// #define MALLOC_LIMIT
//------------------------------------------------------------------------------
// Checked memory allocation
#if defined(PRINT_MEM_INFO)
#include <stdio.h>
static int num_malloc_calls = 0;
static int num_calloc_calls = 0;
static int num_free_calls = 0;
static int countdown_to_fail = 0; // 0 = off
typedef struct MemBlock MemBlock;
struct MemBlock {
void* ptr_;
size_t size_;
MemBlock* next_;
};
static MemBlock* all_blocks = NULL;
static size_t total_mem = 0;
static size_t total_mem_allocated = 0;
static size_t high_water_mark = 0;
static size_t mem_limit = 0;
static int exit_registered = 0;
static void PrintMemInfo(void) {
fprintf(stderr, "\nMEMORY INFO:\n");
fprintf(stderr, "num calls to: malloc = %4d\n", num_malloc_calls);
fprintf(stderr, " calloc = %4d\n", num_calloc_calls);
fprintf(stderr, " free = %4d\n", num_free_calls);
fprintf(stderr, "total_mem: %u\n", (uint32_t)total_mem);
fprintf(stderr, "total_mem allocated: %u\n", (uint32_t)total_mem_allocated);
fprintf(stderr, "high-water mark: %u\n", (uint32_t)high_water_mark);
while (all_blocks != NULL) {
MemBlock* b = all_blocks;
all_blocks = b->next_;
free(b);
}
}
static void Increment(int* const v) {
if (!exit_registered) {
#if defined(MALLOC_FAIL_AT)
{
const char* const malloc_fail_at_str = getenv("MALLOC_FAIL_AT");
if (malloc_fail_at_str != NULL) {
countdown_to_fail = atoi(malloc_fail_at_str);
}
}
#endif
#if defined(MALLOC_LIMIT)
{
const char* const malloc_limit_str = getenv("MALLOC_LIMIT");
if (malloc_limit_str != NULL) {
mem_limit = atoi(malloc_limit_str);
}
}
#endif
(void)countdown_to_fail;
(void)mem_limit;
atexit(PrintMemInfo);
exit_registered = 1;
}
++*v;
}
static void AddMem(void* ptr, size_t size) {
if (ptr != NULL) {
MemBlock* const b = (MemBlock*)malloc(sizeof(*b));
if (b == NULL) abort();
b->next_ = all_blocks;
all_blocks = b;
b->ptr_ = ptr;
b->size_ = size;
total_mem += size;
total_mem_allocated += size;
#if defined(PRINT_MEM_TRAFFIC)
#if defined(MALLOC_FAIL_AT)
fprintf(stderr, "fail-count: %5d [mem=%u]\n",
num_malloc_calls + num_calloc_calls, (uint32_t)total_mem);
#else
fprintf(stderr, "Mem: %u (+%u)\n", (uint32_t)total_mem, (uint32_t)size);
#endif
#endif
if (total_mem > high_water_mark) high_water_mark = total_mem;
}
}
static void SubMem(void* ptr) {
if (ptr != NULL) {
MemBlock** b = &all_blocks;
// Inefficient search, but that's just for debugging.
while (*b != NULL && (*b)->ptr_ != ptr) b = &(*b)->next_;
if (*b == NULL) {
fprintf(stderr, "Invalid pointer free! (%p)\n", ptr);
abort();
}
{
MemBlock* const block = *b;
*b = block->next_;
total_mem -= block->size_;
#if defined(PRINT_MEM_TRAFFIC)
fprintf(stderr, "Mem: %u (-%u)\n",
(uint32_t)total_mem, (uint32_t)block->size_);
#endif
free(block);
}
}
}
#else
#define Increment(v) do {} while (0)
#define AddMem(p, s) do {} while (0)
#define SubMem(p) do {} while (0)
#endif
// Returns 0 in case of overflow of nmemb * size.
static int CheckSizeArgumentsOverflow(uint64_t nmemb, size_t size) {
const uint64_t total_size = nmemb * size;
if (nmemb == 0) return 1;
if ((uint64_t)size > WEBP_MAX_ALLOCABLE_MEMORY / nmemb) return 0;
if (total_size != (size_t)total_size) return 0;
#if defined(PRINT_MEM_INFO) && defined(MALLOC_FAIL_AT)
if (countdown_to_fail > 0 && --countdown_to_fail == 0) {
return 0; // fake fail!
}
#endif
#if defined(MALLOC_LIMIT)
if (mem_limit > 0) {
const uint64_t new_total_mem = (uint64_t)total_mem + total_size;
if (new_total_mem != (size_t)new_total_mem ||
new_total_mem > mem_limit) {
return 0; // fake fail!
}
}
#endif
return 1;
}
void* WebPSafeMalloc(uint64_t nmemb, size_t size) {
void* ptr;
Increment(&num_malloc_calls);
if (!CheckSizeArgumentsOverflow(nmemb, size)) return NULL;
assert(nmemb * size > 0);
ptr = malloc((size_t)(nmemb * size));
AddMem(ptr, (size_t)(nmemb * size));
return ptr;
}
void* WebPSafeCalloc(uint64_t nmemb, size_t size) {
void* ptr;
Increment(&num_calloc_calls);
if (!CheckSizeArgumentsOverflow(nmemb, size)) return NULL;
assert(nmemb * size > 0);
ptr = calloc((size_t)nmemb, size);
AddMem(ptr, (size_t)(nmemb * size));
return ptr;
}
void WebPSafeFree(void* const ptr) {
if (ptr != NULL) {
Increment(&num_free_calls);
SubMem(ptr);
}
free(ptr);
}
// Public API functions.
void* WebPMalloc(size_t size) {
return WebPSafeMalloc(1, size);
}
void WebPFree(void* ptr) {
WebPSafeFree(ptr);
}
//------------------------------------------------------------------------------
void WebPCopyPlane(const uint8_t* src, int src_stride,
uint8_t* dst, int dst_stride, int width, int height) {
assert(src != NULL && dst != NULL);
assert(abs(src_stride) >= width && abs(dst_stride) >= width);
while (height-- > 0) {
memcpy(dst, src, width);
src += src_stride;
dst += dst_stride;
}
}
void WebPCopyPixels(const WebPPicture* const src, WebPPicture* const dst) {
assert(src != NULL && dst != NULL);
assert(src->width == dst->width && src->height == dst->height);
assert(src->use_argb && dst->use_argb);
WebPCopyPlane((uint8_t*)src->argb, 4 * src->argb_stride, (uint8_t*)dst->argb,
4 * dst->argb_stride, 4 * src->width, src->height);
}
//------------------------------------------------------------------------------
#define COLOR_HASH_SIZE (MAX_PALETTE_SIZE * 4)
#define COLOR_HASH_RIGHT_SHIFT 22 // 32 - log2(COLOR_HASH_SIZE).
int WebPGetColorPalette(const WebPPicture* const pic, uint32_t* const palette) {
int i;
int x, y;
int num_colors = 0;
uint8_t in_use[COLOR_HASH_SIZE] = { 0 };
uint32_t colors[COLOR_HASH_SIZE];
const uint32_t* argb = pic->argb;
const int width = pic->width;
const int height = pic->height;
uint32_t last_pix = ~argb[0]; // so we're sure that last_pix != argb[0]
assert(pic != NULL);
assert(pic->use_argb);
for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {
int key;
if (argb[x] == last_pix) {
continue;
}
last_pix = argb[x];
key = VP8LHashPix(last_pix, COLOR_HASH_RIGHT_SHIFT);
while (1) {
if (!in_use[key]) {
colors[key] = last_pix;
in_use[key] = 1;
++num_colors;
if (num_colors > MAX_PALETTE_SIZE) {
return MAX_PALETTE_SIZE + 1; // Exact count not needed.
}
break;
} else if (colors[key] == last_pix) {
break; // The color is already there.
} else {
// Some other color sits here, so do linear conflict resolution.
++key;
key &= (COLOR_HASH_SIZE - 1); // Key mask.
}
}
}
argb += pic->argb_stride;
}
if (palette != NULL) { // Fill the colors into palette.
num_colors = 0;
for (i = 0; i < COLOR_HASH_SIZE; ++i) {
if (in_use[i]) {
palette[num_colors] = colors[i];
++num_colors;
}
}
}
return num_colors;
}
#undef COLOR_HASH_SIZE
#undef COLOR_HASH_RIGHT_SHIFT
//------------------------------------------------------------------------------
#if defined(WEBP_NEED_LOG_TABLE_8BIT)
const uint8_t WebPLogTable8bit[256] = { // 31 ^ clz(i)
0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
};
#endif
//------------------------------------------------------------------------------