5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2025-01-28 07:04:40 +00:00

74 lines
2.3 KiB
Go

// go-qrcode
// Copyright 2014 Tom Harwood
// Package reedsolomon provides error correction encoding for QR Code 2005.
//
// QR Code 2005 uses a Reed-Solomon error correcting code to detect and correct
// errors encountered during decoding.
//
// The generated RS codes are systematic, and consist of the input data with
// error correction bytes appended.
package reedsolomon
import (
"log"
bitset "github.com/skip2/go-qrcode/bitset"
)
// Encode data for QR Code 2005 using the appropriate Reed-Solomon code.
//
// numECBytes is the number of error correction bytes to append, and is
// determined by the target QR Code's version and error correction level.
//
// ISO/IEC 18004 table 9 specifies the numECBytes required. e.g. a 1-L code has
// numECBytes=7.
func Encode(data *bitset.Bitset, numECBytes int) *bitset.Bitset {
// Create a polynomial representing |data|.
//
// The bytes are interpreted as the sequence of coefficients of a polynomial.
// The last byte's value becomes the x^0 coefficient, the second to last
// becomes the x^1 coefficient and so on.
ecpoly := newGFPolyFromData(data)
ecpoly = gfPolyMultiply(ecpoly, newGFPolyMonomial(gfOne, numECBytes))
// Pick the generator polynomial.
generator := rsGeneratorPoly(numECBytes)
// Generate the error correction bytes.
remainder := gfPolyRemainder(ecpoly, generator)
// Combine the data & error correcting bytes.
// The mathematically correct answer is:
//
// result := gfPolyAdd(ecpoly, remainder).
//
// The encoding used by QR Code 2005 is slightly different this result: To
// preserve the original |data| bit sequence exactly, the data and remainder
// are combined manually below. This ensures any most significant zero bits
// are preserved (and not optimised away).
result := bitset.Clone(data)
result.AppendBytes(remainder.data(numECBytes))
return result
}
// rsGeneratorPoly returns the Reed-Solomon generator polynomial with |degree|.
//
// The generator polynomial is calculated as:
// (x + a^0)(x + a^1)...(x + a^degree-1)
func rsGeneratorPoly(degree int) gfPoly {
if degree < 2 {
log.Panic("degree < 2")
}
generator := gfPoly{term: []gfElement{1}}
for i := 0; i < degree; i++ {
nextPoly := gfPoly{term: []gfElement{gfExpTable[i], 1}}
generator = gfPolyMultiply(generator, nextPoly)
}
return generator
}