5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2024-11-30 08:31:36 +00:00
matterbridge/vendor/golang.org/x/text/unicode/rangetable/merge.go
Wim 04567c765e
Add support for markdown to HTML conversion (matrix). Closes #663 (#670)
This uses our own gomatrix lib with the SendHTML function which
adds HTML to formatted_body in matrix.
golang-commonmark is used to convert markdown into valid HTML.
2019-01-06 22:25:19 +01:00

261 lines
6.6 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rangetable
import (
"unicode"
)
// atEnd is used to mark a completed iteration.
const atEnd = unicode.MaxRune + 1
// Merge returns a new RangeTable that is the union of the given tables.
// It can also be used to compact user-created RangeTables. The entries in
// R16 and R32 for any given RangeTable should be sorted and non-overlapping.
//
// A lookup in the resulting table can be several times faster than using In
// directly on the ranges. Merge is an expensive operation, however, and only
// makes sense if one intends to use the result for more than a couple of
// hundred lookups.
func Merge(ranges ...*unicode.RangeTable) *unicode.RangeTable {
rt := &unicode.RangeTable{}
if len(ranges) == 0 {
return rt
}
iter := tablesIter(make([]tableIndex, len(ranges)))
for i, t := range ranges {
iter[i] = tableIndex{t, 0, atEnd}
if len(t.R16) > 0 {
iter[i].next = rune(t.R16[0].Lo)
}
}
if r0 := iter.next16(); r0.Stride != 0 {
for {
r1 := iter.next16()
if r1.Stride == 0 {
rt.R16 = append(rt.R16, r0)
break
}
stride := r1.Lo - r0.Hi
if (r1.Lo == r1.Hi || stride == r1.Stride) && (r0.Lo == r0.Hi || stride == r0.Stride) {
// Fully merge the next range into the previous one.
r0.Hi, r0.Stride = r1.Hi, stride
continue
} else if stride == r0.Stride {
// Move the first element of r1 to r0. This may eliminate an
// entry.
r0.Hi = r1.Lo
r0.Stride = stride
r1.Lo = r1.Lo + r1.Stride
if r1.Lo > r1.Hi {
continue
}
}
rt.R16 = append(rt.R16, r0)
r0 = r1
}
}
for i, t := range ranges {
iter[i] = tableIndex{t, 0, atEnd}
if len(t.R32) > 0 {
iter[i].next = rune(t.R32[0].Lo)
}
}
if r0 := iter.next32(); r0.Stride != 0 {
for {
r1 := iter.next32()
if r1.Stride == 0 {
rt.R32 = append(rt.R32, r0)
break
}
stride := r1.Lo - r0.Hi
if (r1.Lo == r1.Hi || stride == r1.Stride) && (r0.Lo == r0.Hi || stride == r0.Stride) {
// Fully merge the next range into the previous one.
r0.Hi, r0.Stride = r1.Hi, stride
continue
} else if stride == r0.Stride {
// Move the first element of r1 to r0. This may eliminate an
// entry.
r0.Hi = r1.Lo
r1.Lo = r1.Lo + r1.Stride
if r1.Lo > r1.Hi {
continue
}
}
rt.R32 = append(rt.R32, r0)
r0 = r1
}
}
for i := 0; i < len(rt.R16) && rt.R16[i].Hi <= unicode.MaxLatin1; i++ {
rt.LatinOffset = i + 1
}
return rt
}
type tableIndex struct {
t *unicode.RangeTable
p uint32
next rune
}
type tablesIter []tableIndex
// sortIter does an insertion sort using the next field of tableIndex. Insertion
// sort is a good sorting algorithm for this case.
func sortIter(t []tableIndex) {
for i := range t {
for j := i; j > 0 && t[j-1].next > t[j].next; j-- {
t[j], t[j-1] = t[j-1], t[j]
}
}
}
// next16 finds the ranged to be added to the table. If ranges overlap between
// multiple tables it clips the result to a non-overlapping range if the
// elements are not fully subsumed. It returns a zero range if there are no more
// ranges.
func (ti tablesIter) next16() unicode.Range16 {
sortIter(ti)
t0 := ti[0]
if t0.next == atEnd {
return unicode.Range16{}
}
r0 := t0.t.R16[t0.p]
r0.Lo = uint16(t0.next)
// We restrict the Hi of the current range if it overlaps with another range.
for i := range ti {
tn := ti[i]
// Since our tableIndices are sorted by next, we can break if the there
// is no overlap. The first value of a next range can always be merged
// into the current one, so we can break in case of equality as well.
if rune(r0.Hi) <= tn.next {
break
}
rn := tn.t.R16[tn.p]
rn.Lo = uint16(tn.next)
// Limit r0.Hi based on next ranges in list, but allow it to overlap
// with ranges as long as it subsumes it.
m := (rn.Lo - r0.Lo) % r0.Stride
if m == 0 && (rn.Stride == r0.Stride || rn.Lo == rn.Hi) {
// Overlap, take the min of the two Hi values: for simplicity's sake
// we only process one range at a time.
if r0.Hi > rn.Hi {
r0.Hi = rn.Hi
}
} else {
// Not a compatible stride. Set to the last possible value before
// rn.Lo, but ensure there is at least one value.
if x := rn.Lo - m; r0.Lo <= x {
r0.Hi = x
}
break
}
}
// Update the next values for each table.
for i := range ti {
tn := &ti[i]
if rune(r0.Hi) < tn.next {
break
}
rn := tn.t.R16[tn.p]
stride := rune(rn.Stride)
tn.next += stride * (1 + ((rune(r0.Hi) - tn.next) / stride))
if rune(rn.Hi) < tn.next {
if tn.p++; int(tn.p) == len(tn.t.R16) {
tn.next = atEnd
} else {
tn.next = rune(tn.t.R16[tn.p].Lo)
}
}
}
if r0.Lo == r0.Hi {
r0.Stride = 1
}
return r0
}
// next32 finds the ranged to be added to the table. If ranges overlap between
// multiple tables it clips the result to a non-overlapping range if the
// elements are not fully subsumed. It returns a zero range if there are no more
// ranges.
func (ti tablesIter) next32() unicode.Range32 {
sortIter(ti)
t0 := ti[0]
if t0.next == atEnd {
return unicode.Range32{}
}
r0 := t0.t.R32[t0.p]
r0.Lo = uint32(t0.next)
// We restrict the Hi of the current range if it overlaps with another range.
for i := range ti {
tn := ti[i]
// Since our tableIndices are sorted by next, we can break if the there
// is no overlap. The first value of a next range can always be merged
// into the current one, so we can break in case of equality as well.
if rune(r0.Hi) <= tn.next {
break
}
rn := tn.t.R32[tn.p]
rn.Lo = uint32(tn.next)
// Limit r0.Hi based on next ranges in list, but allow it to overlap
// with ranges as long as it subsumes it.
m := (rn.Lo - r0.Lo) % r0.Stride
if m == 0 && (rn.Stride == r0.Stride || rn.Lo == rn.Hi) {
// Overlap, take the min of the two Hi values: for simplicity's sake
// we only process one range at a time.
if r0.Hi > rn.Hi {
r0.Hi = rn.Hi
}
} else {
// Not a compatible stride. Set to the last possible value before
// rn.Lo, but ensure there is at least one value.
if x := rn.Lo - m; r0.Lo <= x {
r0.Hi = x
}
break
}
}
// Update the next values for each table.
for i := range ti {
tn := &ti[i]
if rune(r0.Hi) < tn.next {
break
}
rn := tn.t.R32[tn.p]
stride := rune(rn.Stride)
tn.next += stride * (1 + ((rune(r0.Hi) - tn.next) / stride))
if rune(rn.Hi) < tn.next {
if tn.p++; int(tn.p) == len(tn.t.R32) {
tn.next = atEnd
} else {
tn.next = rune(tn.t.R32[tn.p].Lo)
}
}
}
if r0.Lo == r0.Hi {
r0.Stride = 1
}
return r0
}