5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2024-12-28 03:15:39 +00:00
matterbridge/vendor/filippo.io/edwards25519/field/fe_generic.go
2022-03-20 14:57:48 +01:00

265 lines
8.4 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package field
import "math/bits"
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
// bits.Mul64 and bits.Add64 intrinsics.
type uint128 struct {
lo, hi uint64
}
// mul64 returns a * b.
func mul64(a, b uint64) uint128 {
hi, lo := bits.Mul64(a, b)
return uint128{lo, hi}
}
// addMul64 returns v + a * b.
func addMul64(v uint128, a, b uint64) uint128 {
hi, lo := bits.Mul64(a, b)
lo, c := bits.Add64(lo, v.lo, 0)
hi, _ = bits.Add64(hi, v.hi, c)
return uint128{lo, hi}
}
// shiftRightBy51 returns a >> 51. a is assumed to be at most 115 bits.
func shiftRightBy51(a uint128) uint64 {
return (a.hi << (64 - 51)) | (a.lo >> 51)
}
func feMulGeneric(v, a, b *Element) {
a0 := a.l0
a1 := a.l1
a2 := a.l2
a3 := a.l3
a4 := a.l4
b0 := b.l0
b1 := b.l1
b2 := b.l2
b3 := b.l3
b4 := b.l4
// Limb multiplication works like pen-and-paper columnar multiplication, but
// with 51-bit limbs instead of digits.
//
// a4 a3 a2 a1 a0 x
// b4 b3 b2 b1 b0 =
// ------------------------
// a4b0 a3b0 a2b0 a1b0 a0b0 +
// a4b1 a3b1 a2b1 a1b1 a0b1 +
// a4b2 a3b2 a2b2 a1b2 a0b2 +
// a4b3 a3b3 a2b3 a1b3 a0b3 +
// a4b4 a3b4 a2b4 a1b4 a0b4 =
// ----------------------------------------------
// r8 r7 r6 r5 r4 r3 r2 r1 r0
//
// We can then use the reduction identity (a * 2²⁵⁵ + b = a * 19 + b) to
// reduce the limbs that would overflow 255 bits. r5 * 2²⁵⁵ becomes 19 * r5,
// r6 * 2³⁰⁶ becomes 19 * r6 * 2⁵¹, etc.
//
// Reduction can be carried out simultaneously to multiplication. For
// example, we do not compute r5: whenever the result of a multiplication
// belongs to r5, like a1b4, we multiply it by 19 and add the result to r0.
//
// a4b0 a3b0 a2b0 a1b0 a0b0 +
// a3b1 a2b1 a1b1 a0b1 19×a4b1 +
// a2b2 a1b2 a0b2 19×a4b2 19×a3b2 +
// a1b3 a0b3 19×a4b3 19×a3b3 19×a2b3 +
// a0b4 19×a4b4 19×a3b4 19×a2b4 19×a1b4 =
// --------------------------------------
// r4 r3 r2 r1 r0
//
// Finally we add up the columns into wide, overlapping limbs.
a1_19 := a1 * 19
a2_19 := a2 * 19
a3_19 := a3 * 19
a4_19 := a4 * 19
// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
r0 := mul64(a0, b0)
r0 = addMul64(r0, a1_19, b4)
r0 = addMul64(r0, a2_19, b3)
r0 = addMul64(r0, a3_19, b2)
r0 = addMul64(r0, a4_19, b1)
// r1 = a0×b1 + a1×b0 + 19×(a2×b4 + a3×b3 + a4×b2)
r1 := mul64(a0, b1)
r1 = addMul64(r1, a1, b0)
r1 = addMul64(r1, a2_19, b4)
r1 = addMul64(r1, a3_19, b3)
r1 = addMul64(r1, a4_19, b2)
// r2 = a0×b2 + a1×b1 + a2×b0 + 19×(a3×b4 + a4×b3)
r2 := mul64(a0, b2)
r2 = addMul64(r2, a1, b1)
r2 = addMul64(r2, a2, b0)
r2 = addMul64(r2, a3_19, b4)
r2 = addMul64(r2, a4_19, b3)
// r3 = a0×b3 + a1×b2 + a2×b1 + a3×b0 + 19×a4×b4
r3 := mul64(a0, b3)
r3 = addMul64(r3, a1, b2)
r3 = addMul64(r3, a2, b1)
r3 = addMul64(r3, a3, b0)
r3 = addMul64(r3, a4_19, b4)
// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
r4 := mul64(a0, b4)
r4 = addMul64(r4, a1, b3)
r4 = addMul64(r4, a2, b2)
r4 = addMul64(r4, a3, b1)
r4 = addMul64(r4, a4, b0)
// After the multiplication, we need to reduce (carry) the five coefficients
// to obtain a result with limbs that are at most slightly larger than 2⁵¹,
// to respect the Element invariant.
//
// Overall, the reduction works the same as carryPropagate, except with
// wider inputs: we take the carry for each coefficient by shifting it right
// by 51, and add it to the limb above it. The top carry is multiplied by 19
// according to the reduction identity and added to the lowest limb.
//
// The largest coefficient (r0) will be at most 111 bits, which guarantees
// that all carries are at most 111 - 51 = 60 bits, which fits in a uint64.
//
// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
// r0 < 2⁵²×2⁵² + 19×(2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵²)
// r0 < (1 + 19 × 4) × 2⁵² × 2⁵²
// r0 < 2⁷ × 2⁵² × 2⁵²
// r0 < 2¹¹¹
//
// Moreover, the top coefficient (r4) is at most 107 bits, so c4 is at most
// 56 bits, and c4 * 19 is at most 61 bits, which again fits in a uint64 and
// allows us to easily apply the reduction identity.
//
// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
// r4 < 5 × 2⁵² × 2⁵²
// r4 < 2¹⁰⁷
//
c0 := shiftRightBy51(r0)
c1 := shiftRightBy51(r1)
c2 := shiftRightBy51(r2)
c3 := shiftRightBy51(r3)
c4 := shiftRightBy51(r4)
rr0 := r0.lo&maskLow51Bits + c4*19
rr1 := r1.lo&maskLow51Bits + c0
rr2 := r2.lo&maskLow51Bits + c1
rr3 := r3.lo&maskLow51Bits + c2
rr4 := r4.lo&maskLow51Bits + c3
// Now all coefficients fit into 64-bit registers but are still too large to
// be passed around as a Element. We therefore do one last carry chain,
// where the carries will be small enough to fit in the wiggle room above 2⁵¹.
*v = Element{rr0, rr1, rr2, rr3, rr4}
v.carryPropagate()
}
func feSquareGeneric(v, a *Element) {
l0 := a.l0
l1 := a.l1
l2 := a.l2
l3 := a.l3
l4 := a.l4
// Squaring works precisely like multiplication above, but thanks to its
// symmetry we get to group a few terms together.
//
// l4 l3 l2 l1 l0 x
// l4 l3 l2 l1 l0 =
// ------------------------
// l4l0 l3l0 l2l0 l1l0 l0l0 +
// l4l1 l3l1 l2l1 l1l1 l0l1 +
// l4l2 l3l2 l2l2 l1l2 l0l2 +
// l4l3 l3l3 l2l3 l1l3 l0l3 +
// l4l4 l3l4 l2l4 l1l4 l0l4 =
// ----------------------------------------------
// r8 r7 r6 r5 r4 r3 r2 r1 r0
//
// l4l0 l3l0 l2l0 l1l0 l0l0 +
// l3l1 l2l1 l1l1 l0l1 19×l4l1 +
// l2l2 l1l2 l0l2 19×l4l2 19×l3l2 +
// l1l3 l0l3 19×l4l3 19×l3l3 19×l2l3 +
// l0l4 19×l4l4 19×l3l4 19×l2l4 19×l1l4 =
// --------------------------------------
// r4 r3 r2 r1 r0
//
// With precomputed 2×, 19×, and 2×19× terms, we can compute each limb with
// only three Mul64 and four Add64, instead of five and eight.
l0_2 := l0 * 2
l1_2 := l1 * 2
l1_38 := l1 * 38
l2_38 := l2 * 38
l3_38 := l3 * 38
l3_19 := l3 * 19
l4_19 := l4 * 19
// r0 = l0×l0 + 19×(l1×l4 + l2×l3 + l3×l2 + l4×l1) = l0×l0 + 19×2×(l1×l4 + l2×l3)
r0 := mul64(l0, l0)
r0 = addMul64(r0, l1_38, l4)
r0 = addMul64(r0, l2_38, l3)
// r1 = l0×l1 + l1×l0 + 19×(l2×l4 + l3×l3 + l4×l2) = 2×l0×l1 + 19×2×l2×l4 + 19×l3×l3
r1 := mul64(l0_2, l1)
r1 = addMul64(r1, l2_38, l4)
r1 = addMul64(r1, l3_19, l3)
// r2 = l0×l2 + l1×l1 + l2×l0 + 19×(l3×l4 + l4×l3) = 2×l0×l2 + l1×l1 + 19×2×l3×l4
r2 := mul64(l0_2, l2)
r2 = addMul64(r2, l1, l1)
r2 = addMul64(r2, l3_38, l4)
// r3 = l0×l3 + l1×l2 + l2×l1 + l3×l0 + 19×l4×l4 = 2×l0×l3 + 2×l1×l2 + 19×l4×l4
r3 := mul64(l0_2, l3)
r3 = addMul64(r3, l1_2, l2)
r3 = addMul64(r3, l4_19, l4)
// r4 = l0×l4 + l1×l3 + l2×l2 + l3×l1 + l4×l0 = 2×l0×l4 + 2×l1×l3 + l2×l2
r4 := mul64(l0_2, l4)
r4 = addMul64(r4, l1_2, l3)
r4 = addMul64(r4, l2, l2)
c0 := shiftRightBy51(r0)
c1 := shiftRightBy51(r1)
c2 := shiftRightBy51(r2)
c3 := shiftRightBy51(r3)
c4 := shiftRightBy51(r4)
rr0 := r0.lo&maskLow51Bits + c4*19
rr1 := r1.lo&maskLow51Bits + c0
rr2 := r2.lo&maskLow51Bits + c1
rr3 := r3.lo&maskLow51Bits + c2
rr4 := r4.lo&maskLow51Bits + c3
*v = Element{rr0, rr1, rr2, rr3, rr4}
v.carryPropagate()
}
// carryPropagate brings the limbs below 52 bits by applying the reduction
// identity (a * 2²⁵⁵ + b = a * 19 + b) to the l4 carry.
func (v *Element) carryPropagateGeneric() *Element {
c0 := v.l0 >> 51
c1 := v.l1 >> 51
c2 := v.l2 >> 51
c3 := v.l3 >> 51
c4 := v.l4 >> 51
v.l0 = v.l0&maskLow51Bits + c4*19
v.l1 = v.l1&maskLow51Bits + c0
v.l2 = v.l2&maskLow51Bits + c1
v.l3 = v.l3&maskLow51Bits + c2
v.l4 = v.l4&maskLow51Bits + c3
return v
}