5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2024-12-28 02:05:39 +00:00
matterbridge/vendor/go.mau.fi/libsignal/ecc/SignCurve25519.go
2022-03-20 14:57:48 +01:00

98 lines
2.7 KiB
Go

package ecc
// Package curve25519sign implements a signature scheme based on Curve25519 keys.
// See https://moderncrypto.org/mail-archive/curves/2014/000205.html for details.
import (
"crypto/ed25519"
"crypto/sha512"
"filippo.io/edwards25519"
"filippo.io/edwards25519/field"
)
// sign signs the message with privateKey and returns a signature as a byte slice.
func sign(privateKey *[32]byte, message []byte, random [64]byte) *[64]byte {
// Calculate Ed25519 public key from Curve25519 private key
var A edwards25519.Point
privateKeyScalar, _ := edwards25519.NewScalar().SetBytesWithClamping(privateKey[:])
A.ScalarBaseMult(privateKeyScalar)
publicKey := *(*[32]byte)(A.Bytes())
// Calculate r
diversifier := [32]byte{
0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}
var r [64]byte
hash := sha512.New()
hash.Write(diversifier[:])
hash.Write(privateKey[:])
hash.Write(message)
hash.Write(random[:])
hash.Sum(r[:0])
// Calculate R
var rReduced *edwards25519.Scalar
rReduced, _ = edwards25519.NewScalar().SetUniformBytes(r[:])
var R edwards25519.Point
R.ScalarBaseMult(rReduced)
var encodedR [32]byte
encodedR = *(*[32]byte)(R.Bytes())
// Calculate S = r + SHA2-512(R || A_ed || msg) * a (mod L)
var hramDigest [64]byte
hash.Reset()
hash.Write(encodedR[:])
hash.Write(publicKey[:])
hash.Write(message)
hash.Sum(hramDigest[:0])
hramDigestReduced, _ := edwards25519.NewScalar().SetUniformBytes(hramDigest[:])
sScalar := edwards25519.NewScalar().MultiplyAdd(hramDigestReduced, privateKeyScalar, rReduced)
s := *(*[32]byte)(sScalar.Bytes())
signature := new([64]byte)
copy(signature[:], encodedR[:])
copy(signature[32:], s[:])
signature[63] |= publicKey[31] & 0x80
return signature
}
// verify checks whether the message has a valid signature.
func verify(publicKey [32]byte, message []byte, signature *[64]byte) bool {
publicKey[31] &= 0x7F
/* Convert the Curve25519 public key into an Ed25519 public key. In
particular, convert Curve25519's "montgomery" x-coordinate into an
Ed25519 "edwards" y-coordinate:
ed_y = (mont_x - 1) / (mont_x + 1)
NOTE: mont_x=-1 is converted to ed_y=0 since fe_invert is mod-exp
Then move the sign bit into the pubkey from the signature.
*/
var edY, one, montX, montXMinusOne, montXPlusOne field.Element
_, _ = montX.SetBytes(publicKey[:])
_ = one.One()
montXMinusOne.Subtract(&montX, &one)
montXPlusOne.Add(&montX, &one)
montXPlusOne.Invert(&montXPlusOne)
edY.Multiply(&montXMinusOne, &montXPlusOne)
A_ed := *(*[32]byte)(edY.Bytes())
A_ed[31] |= signature[63] & 0x80
signature[63] &= 0x7F
return ed25519.Verify(A_ed[:], message, signature[:])
}