mirror of
https://github.com/cwinfo/matterbridge.git
synced 2024-11-23 02:21:36 +00:00
740 lines
24 KiB
Go
740 lines
24 KiB
Go
// Copyright 2015 Rick Beton. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package period
|
|
|
|
import (
|
|
"fmt"
|
|
"time"
|
|
)
|
|
|
|
const daysPerYearE4 int64 = 3652425 // 365.2425 days by the Gregorian rule
|
|
const daysPerMonthE4 int64 = 304375 // 30.4375 days per month
|
|
const daysPerMonthE6 int64 = 30436875 // 30.436875 days per month
|
|
|
|
const oneE4 int64 = 10000
|
|
const oneE5 int64 = 100000
|
|
const oneE6 int64 = 1000000
|
|
const oneE7 int64 = 10000000
|
|
|
|
const hundredMs = 100 * time.Millisecond
|
|
|
|
// reminder: int64 overflow is after 9,223,372,036,854,775,807 (math.MaxInt64)
|
|
|
|
// Period holds a period of time and provides conversion to/from ISO-8601 representations.
|
|
// Therefore there are six fields: years, months, days, hours, minutes, and seconds.
|
|
//
|
|
// In the ISO representation, decimal fractions are supported, although only the last non-zero
|
|
// component is allowed to have a fraction according to the Standard. For example "P2.5Y"
|
|
// is 2.5 years.
|
|
//
|
|
// However, in this implementation, the precision is limited to one decimal place only, by
|
|
// means of integers with fixed point arithmetic. (This avoids using float32 in the struct,
|
|
// so there are no problems testing equality using ==.)
|
|
//
|
|
// The implementation limits the range of possible values to ± 2^16 / 10 in each field.
|
|
// Note in particular that the range of years is limited to approximately ± 3276.
|
|
//
|
|
// The concept of weeks exists in string representations of periods, but otherwise weeks
|
|
// are unimportant. The period contains a number of days from which the number of weeks can
|
|
// be calculated when needed.
|
|
//
|
|
// Note that although fractional weeks can be parsed, they will never be returned via String().
|
|
// This is because the number of weeks is always inferred from the number of days.
|
|
//
|
|
type Period struct {
|
|
years, months, days, hours, minutes, seconds int16
|
|
}
|
|
|
|
// NewYMD creates a simple period without any fractional parts. The fields are initialised verbatim
|
|
// without any normalisation; e.g. 12 months will not become 1 year. Use the Normalise method if you
|
|
// need to.
|
|
//
|
|
// All the parameters must have the same sign (otherwise a panic occurs).
|
|
func NewYMD(years, months, days int) Period {
|
|
return New(years, months, days, 0, 0, 0)
|
|
}
|
|
|
|
// NewHMS creates a simple period without any fractional parts. The fields are initialised verbatim
|
|
// without any normalisation; e.g. 120 seconds will not become 2 minutes. Use the Normalise method
|
|
// if you need to.
|
|
//
|
|
// All the parameters must have the same sign (otherwise a panic occurs).
|
|
func NewHMS(hours, minutes, seconds int) Period {
|
|
return New(0, 0, 0, hours, minutes, seconds)
|
|
}
|
|
|
|
// New creates a simple period without any fractional parts. The fields are initialised verbatim
|
|
// without any normalisation; e.g. 120 seconds will not become 2 minutes. Use the Normalise method
|
|
// if you need to.
|
|
//
|
|
// All the parameters must have the same sign (otherwise a panic occurs).
|
|
func New(years, months, days, hours, minutes, seconds int) Period {
|
|
if (years >= 0 && months >= 0 && days >= 0 && hours >= 0 && minutes >= 0 && seconds >= 0) ||
|
|
(years <= 0 && months <= 0 && days <= 0 && hours <= 0 && minutes <= 0 && seconds <= 0) {
|
|
return Period{
|
|
int16(years) * 10, int16(months) * 10, int16(days) * 10,
|
|
int16(hours) * 10, int16(minutes) * 10, int16(seconds) * 10,
|
|
}
|
|
}
|
|
panic(fmt.Sprintf("Periods must have homogeneous signs; got P%dY%dM%dDT%dH%dM%dS",
|
|
years, months, days, hours, minutes, seconds))
|
|
}
|
|
|
|
// TODO NewFloat
|
|
|
|
// NewOf converts a time duration to a Period, and also indicates whether the conversion is precise.
|
|
// Any time duration that spans more than ± 3276 hours will be approximated by assuming that there
|
|
// are 24 hours per day, 30.4375 per month and 365.2425 days per year.
|
|
func NewOf(duration time.Duration) (p Period, precise bool) {
|
|
var sign int16 = 1
|
|
d := duration
|
|
if duration < 0 {
|
|
sign = -1
|
|
d = -duration
|
|
}
|
|
|
|
sign10 := sign * 10
|
|
|
|
totalHours := int64(d / time.Hour)
|
|
|
|
// check for 16-bit overflow - occurs near the 4.5 month mark
|
|
if totalHours < 3277 {
|
|
// simple HMS case
|
|
minutes := d % time.Hour / time.Minute
|
|
seconds := d % time.Minute / hundredMs
|
|
return Period{0, 0, 0, sign10 * int16(totalHours), sign10 * int16(minutes), sign * int16(seconds)}, true
|
|
}
|
|
|
|
totalDays := totalHours / 24 // ignoring daylight savings adjustments
|
|
|
|
if totalDays < 3277 {
|
|
hours := totalHours - totalDays*24
|
|
minutes := d % time.Hour / time.Minute
|
|
seconds := d % time.Minute / hundredMs
|
|
return Period{0, 0, sign10 * int16(totalDays), sign10 * int16(hours), sign10 * int16(minutes), sign * int16(seconds)}, false
|
|
}
|
|
|
|
// TODO it is uncertain whether this is too imprecise and should be improved
|
|
years := (oneE4 * totalDays) / daysPerYearE4
|
|
months := ((oneE4 * totalDays) / daysPerMonthE4) - (12 * years)
|
|
hours := totalHours - totalDays*24
|
|
totalDays = ((totalDays * oneE4) - (daysPerMonthE4 * months) - (daysPerYearE4 * years)) / oneE4
|
|
return Period{sign10 * int16(years), sign10 * int16(months), sign10 * int16(totalDays), sign10 * int16(hours), 0, 0}, false
|
|
}
|
|
|
|
// Between converts the span between two times to a period. Based on the Gregorian conversion
|
|
// algorithms of `time.Time`, the resultant period is precise.
|
|
//
|
|
// The result is not normalised; for time differences less than 3276 days, it will contain zero in the
|
|
// years and months fields but the number of days may be up to 3275; this reduces errors arising from
|
|
// the variable lengths of months. For larger time differences, greater than 3276 days, the months and
|
|
// years fields are used as well.
|
|
//
|
|
// Remember that the resultant period does not retain any knowledge of the calendar, so any subsequent
|
|
// computations applied to the period can only be precise if they concern either the date (year, month,
|
|
// day) part, or the clock (hour, minute, second) part, but not both.
|
|
func Between(t1, t2 time.Time) (p Period) {
|
|
if t1.Location() != t2.Location() {
|
|
t2 = t2.In(t1.Location())
|
|
}
|
|
|
|
sign := 1
|
|
if t2.Before(t1) {
|
|
t1, t2, sign = t2, t1, -1
|
|
}
|
|
|
|
year, month, day, hour, min, sec, hundredth := daysDiff(t1, t2)
|
|
|
|
if sign < 0 {
|
|
p = New(-year, -month, -day, -hour, -min, -sec)
|
|
p.seconds -= int16(hundredth)
|
|
} else {
|
|
p = New(year, month, day, hour, min, sec)
|
|
p.seconds += int16(hundredth)
|
|
}
|
|
return
|
|
}
|
|
|
|
func daysDiff(t1, t2 time.Time) (year, month, day, hour, min, sec, hundredth int) {
|
|
duration := t2.Sub(t1)
|
|
|
|
hh1, mm1, ss1 := t1.Clock()
|
|
hh2, mm2, ss2 := t2.Clock()
|
|
|
|
day = int(duration / (24 * time.Hour))
|
|
|
|
hour = int(hh2 - hh1)
|
|
min = int(mm2 - mm1)
|
|
sec = int(ss2 - ss1)
|
|
hundredth = (t2.Nanosecond() - t1.Nanosecond()) / 100000000
|
|
|
|
// Normalize negative values
|
|
if sec < 0 {
|
|
sec += 60
|
|
min--
|
|
}
|
|
|
|
if min < 0 {
|
|
min += 60
|
|
hour--
|
|
}
|
|
|
|
if hour < 0 {
|
|
hour += 24
|
|
// no need to reduce day - it's calculated differently.
|
|
}
|
|
|
|
// test 16bit storage limit (with 1 fixed decimal place)
|
|
if day > 3276 {
|
|
y1, m1, d1 := t1.Date()
|
|
y2, m2, d2 := t2.Date()
|
|
year = y2 - y1
|
|
month = int(m2 - m1)
|
|
day = d2 - d1
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// IsZero returns true if applied to a zero-length period.
|
|
func (period Period) IsZero() bool {
|
|
return period == Period{}
|
|
}
|
|
|
|
// IsPositive returns true if any field is greater than zero. By design, this also implies that
|
|
// all the other fields are greater than or equal to zero.
|
|
func (period Period) IsPositive() bool {
|
|
return period.years > 0 || period.months > 0 || period.days > 0 ||
|
|
period.hours > 0 || period.minutes > 0 || period.seconds > 0
|
|
}
|
|
|
|
// IsNegative returns true if any field is negative. By design, this also implies that
|
|
// all the other fields are negative or zero.
|
|
func (period Period) IsNegative() bool {
|
|
return period.years < 0 || period.months < 0 || period.days < 0 ||
|
|
period.hours < 0 || period.minutes < 0 || period.seconds < 0
|
|
}
|
|
|
|
// Sign returns +1 for positive periods and -1 for negative periods. If the period is zero, it returns zero.
|
|
func (period Period) Sign() int {
|
|
if period.IsZero() {
|
|
return 0
|
|
}
|
|
if period.IsNegative() {
|
|
return -1
|
|
}
|
|
return 1
|
|
}
|
|
|
|
// OnlyYMD returns a new Period with only the year, month and day fields. The hour,
|
|
// minute and second fields are zeroed.
|
|
func (period Period) OnlyYMD() Period {
|
|
return Period{period.years, period.months, period.days, 0, 0, 0}
|
|
}
|
|
|
|
// OnlyHMS returns a new Period with only the hour, minute and second fields. The year,
|
|
// month and day fields are zeroed.
|
|
func (period Period) OnlyHMS() Period {
|
|
return Period{0, 0, 0, period.hours, period.minutes, period.seconds}
|
|
}
|
|
|
|
// Abs converts a negative period to a positive one.
|
|
func (period Period) Abs() Period {
|
|
return Period{absInt16(period.years), absInt16(period.months), absInt16(period.days),
|
|
absInt16(period.hours), absInt16(period.minutes), absInt16(period.seconds)}
|
|
}
|
|
|
|
func absInt16(v int16) int16 {
|
|
if v < 0 {
|
|
return -v
|
|
}
|
|
return v
|
|
}
|
|
|
|
// Negate changes the sign of the period.
|
|
func (period Period) Negate() Period {
|
|
return Period{-period.years, -period.months, -period.days, -period.hours, -period.minutes, -period.seconds}
|
|
}
|
|
|
|
// Add adds two periods together. Use this method along with Negate in order to subtract periods.
|
|
//
|
|
// The result is not normalised and may overflow arithmetically (to make this unlikely, use Normalise on
|
|
// the inputs before adding them).
|
|
func (period Period) Add(that Period) Period {
|
|
return Period{
|
|
period.years + that.years,
|
|
period.months + that.months,
|
|
period.days + that.days,
|
|
period.hours + that.hours,
|
|
period.minutes + that.minutes,
|
|
period.seconds + that.seconds,
|
|
}
|
|
}
|
|
|
|
// Scale a period by a multiplication factor. Obviously, this can both enlarge and shrink it,
|
|
// and change the sign if negative. The result is normalised.
|
|
//
|
|
// Bear in mind that the internal representation is limited by fixed-point arithmetic with one
|
|
// decimal place; each field is only int16.
|
|
//
|
|
// Known issue: scaling by a large reduction factor (i.e. much less than one) doesn't work properly.
|
|
func (period Period) Scale(factor float32) Period {
|
|
|
|
if -0.5 < factor && factor < 0.5 {
|
|
d, pr1 := period.Duration()
|
|
mul := float64(d) * float64(factor)
|
|
p2, pr2 := NewOf(time.Duration(mul))
|
|
return p2.Normalise(pr1 && pr2)
|
|
}
|
|
|
|
y := int64(float32(period.years) * factor)
|
|
m := int64(float32(period.months) * factor)
|
|
d := int64(float32(period.days) * factor)
|
|
hh := int64(float32(period.hours) * factor)
|
|
mm := int64(float32(period.minutes) * factor)
|
|
ss := int64(float32(period.seconds) * factor)
|
|
|
|
return (&period64{y, m, d, hh, mm, ss, false}).normalise64(true).toPeriod()
|
|
}
|
|
|
|
// Years gets the whole number of years in the period.
|
|
// The result is the number of years and does not include any other field.
|
|
func (period Period) Years() int {
|
|
return int(period.YearsFloat())
|
|
}
|
|
|
|
// YearsFloat gets the number of years in the period, including a fraction if any is present.
|
|
// The result is the number of years and does not include any other field.
|
|
func (period Period) YearsFloat() float32 {
|
|
return float32(period.years) / 10
|
|
}
|
|
|
|
// Months gets the whole number of months in the period.
|
|
// The result is the number of months and does not include any other field.
|
|
//
|
|
// Note that after normalisation, whole multiple of 12 months are added to
|
|
// the number of years, so the number of months will be reduced correspondingly.
|
|
func (period Period) Months() int {
|
|
return int(period.MonthsFloat())
|
|
}
|
|
|
|
// MonthsFloat gets the number of months in the period.
|
|
// The result is the number of months and does not include any other field.
|
|
//
|
|
// Note that after normalisation, whole multiple of 12 months are added to
|
|
// the number of years, so the number of months will be reduced correspondingly.
|
|
func (period Period) MonthsFloat() float32 {
|
|
return float32(period.months) / 10
|
|
}
|
|
|
|
// Days gets the whole number of days in the period. This includes the implied
|
|
// number of weeks but does not include any other field.
|
|
func (period Period) Days() int {
|
|
return int(period.DaysFloat())
|
|
}
|
|
|
|
// DaysFloat gets the number of days in the period. This includes the implied
|
|
// number of weeks but does not include any other field.
|
|
func (period Period) DaysFloat() float32 {
|
|
return float32(period.days) / 10
|
|
}
|
|
|
|
// Weeks calculates the number of whole weeks from the number of days. If the result
|
|
// would contain a fraction, it is truncated.
|
|
// The result is the number of weeks and does not include any other field.
|
|
//
|
|
// Note that weeks are synthetic: they are internally represented using days.
|
|
// See ModuloDays(), which returns the number of days excluding whole weeks.
|
|
func (period Period) Weeks() int {
|
|
return int(period.days) / 70
|
|
}
|
|
|
|
// WeeksFloat calculates the number of weeks from the number of days.
|
|
// The result is the number of weeks and does not include any other field.
|
|
func (period Period) WeeksFloat() float32 {
|
|
return float32(period.days) / 70
|
|
}
|
|
|
|
// ModuloDays calculates the whole number of days remaining after the whole number of weeks
|
|
// has been excluded.
|
|
func (period Period) ModuloDays() int {
|
|
days := absInt16(period.days) % 70
|
|
f := int(days / 10)
|
|
if period.days < 0 {
|
|
return -f
|
|
}
|
|
return f
|
|
}
|
|
|
|
// Hours gets the whole number of hours in the period.
|
|
// The result is the number of hours and does not include any other field.
|
|
func (period Period) Hours() int {
|
|
return int(period.HoursFloat())
|
|
}
|
|
|
|
// HoursFloat gets the number of hours in the period.
|
|
// The result is the number of hours and does not include any other field.
|
|
func (period Period) HoursFloat() float32 {
|
|
return float32(period.hours) / 10
|
|
}
|
|
|
|
// Minutes gets the whole number of minutes in the period.
|
|
// The result is the number of minutes and does not include any other field.
|
|
//
|
|
// Note that after normalisation, whole multiple of 60 minutes are added to
|
|
// the number of hours, so the number of minutes will be reduced correspondingly.
|
|
func (period Period) Minutes() int {
|
|
return int(period.MinutesFloat())
|
|
}
|
|
|
|
// MinutesFloat gets the number of minutes in the period.
|
|
// The result is the number of minutes and does not include any other field.
|
|
//
|
|
// Note that after normalisation, whole multiple of 60 minutes are added to
|
|
// the number of hours, so the number of minutes will be reduced correspondingly.
|
|
func (period Period) MinutesFloat() float32 {
|
|
return float32(period.minutes) / 10
|
|
}
|
|
|
|
// Seconds gets the whole number of seconds in the period.
|
|
// The result is the number of seconds and does not include any other field.
|
|
//
|
|
// Note that after normalisation, whole multiple of 60 seconds are added to
|
|
// the number of minutes, so the number of seconds will be reduced correspondingly.
|
|
func (period Period) Seconds() int {
|
|
return int(period.SecondsFloat())
|
|
}
|
|
|
|
// SecondsFloat gets the number of seconds in the period.
|
|
// The result is the number of seconds and does not include any other field.
|
|
//
|
|
// Note that after normalisation, whole multiple of 60 seconds are added to
|
|
// the number of minutes, so the number of seconds will be reduced correspondingly.
|
|
func (period Period) SecondsFloat() float32 {
|
|
return float32(period.seconds) / 10
|
|
}
|
|
|
|
// AddTo adds the period to a time, returning the result.
|
|
// A flag is also returned that is true when the conversion was precise and false otherwise.
|
|
//
|
|
// When the period specifies hours, minutes and seconds only, the result is precise.
|
|
// Also, when the period specifies whole years, months and days (i.e. without fractions), the
|
|
// result is precise. However, when years, months or days contains fractions, the result
|
|
// is only an approximation (it assumes that all days are 24 hours and every year is 365.2425 days).
|
|
func (period Period) AddTo(t time.Time) (time.Time, bool) {
|
|
wholeYears := (period.years % 10) == 0
|
|
wholeMonths := (period.months % 10) == 0
|
|
wholeDays := (period.days % 10) == 0
|
|
|
|
if wholeYears && wholeMonths && wholeDays {
|
|
// in this case, time.AddDate provides an exact solution
|
|
stE3 := totalSecondsE3(period)
|
|
t1 := t.AddDate(int(period.years/10), int(period.months/10), int(period.days/10))
|
|
return t1.Add(stE3 * time.Millisecond), true
|
|
}
|
|
|
|
d, precise := period.Duration()
|
|
return t.Add(d), precise
|
|
}
|
|
|
|
// DurationApprox converts a period to the equivalent duration in nanoseconds.
|
|
// When the period specifies hours, minutes and seconds only, the result is precise.
|
|
// however, when the period specifies years, months and days, it is impossible to be precise
|
|
// because the result may depend on knowing date and timezone information, so the duration
|
|
// is estimated on the basis of a year being 365.2425 days and a month being
|
|
// 1/12 of a that; days are all assumed to be 24 hours long.
|
|
func (period Period) DurationApprox() time.Duration {
|
|
d, _ := period.Duration()
|
|
return d
|
|
}
|
|
|
|
// Duration converts a period to the equivalent duration in nanoseconds.
|
|
// A flag is also returned that is true when the conversion was precise and false otherwise.
|
|
//
|
|
// When the period specifies hours, minutes and seconds only, the result is precise.
|
|
// however, when the period specifies years, months and days, it is impossible to be precise
|
|
// because the result may depend on knowing date and timezone information, so the duration
|
|
// is estimated on the basis of a year being 365.2425 days and a month being
|
|
// 1/12 of a that; days are all assumed to be 24 hours long.
|
|
func (period Period) Duration() (time.Duration, bool) {
|
|
// remember that the fields are all fixed-point 1E1
|
|
tdE6 := time.Duration(totalDaysApproxE7(period) * 8640)
|
|
stE3 := totalSecondsE3(period)
|
|
return tdE6*time.Microsecond + stE3*time.Millisecond, tdE6 == 0
|
|
}
|
|
|
|
func totalSecondsE3(period Period) time.Duration {
|
|
// remember that the fields are all fixed-point 1E1
|
|
// and these are divided by 1E1
|
|
hhE3 := time.Duration(period.hours) * 360000
|
|
mmE3 := time.Duration(period.minutes) * 6000
|
|
ssE3 := time.Duration(period.seconds) * 100
|
|
return hhE3 + mmE3 + ssE3
|
|
}
|
|
|
|
func totalDaysApproxE7(period Period) int64 {
|
|
// remember that the fields are all fixed-point 1E1
|
|
ydE6 := int64(period.years) * (daysPerYearE4 * 100)
|
|
mdE6 := int64(period.months) * daysPerMonthE6
|
|
ddE6 := int64(period.days) * oneE6
|
|
return ydE6 + mdE6 + ddE6
|
|
}
|
|
|
|
// TotalDaysApprox gets the approximate total number of days in the period. The approximation assumes
|
|
// a year is 365.2425 days and a month is 1/12 of that. Whole multiples of 24 hours are also included
|
|
// in the calculation.
|
|
func (period Period) TotalDaysApprox() int {
|
|
pn := period.Normalise(false)
|
|
tdE6 := totalDaysApproxE7(pn)
|
|
hE6 := (int64(pn.hours) * oneE6) / 24
|
|
return int((tdE6 + hE6) / oneE7)
|
|
}
|
|
|
|
// TotalMonthsApprox gets the approximate total number of months in the period. The days component
|
|
// is included by approximation, assuming a year is 365.2425 days and a month is 1/12 of that.
|
|
// Whole multiples of 24 hours are also included in the calculation.
|
|
func (period Period) TotalMonthsApprox() int {
|
|
pn := period.Normalise(false)
|
|
mE1 := int64(pn.years)*12 + int64(pn.months)
|
|
hE1 := int64(pn.hours) / 24
|
|
dE1 := ((int64(pn.days) + hE1) * oneE6) / daysPerMonthE6
|
|
return int((mE1 + dE1) / 10)
|
|
}
|
|
|
|
// Normalise attempts to simplify the fields. It operates in either precise or imprecise mode.
|
|
//
|
|
// Because the number of hours per day is imprecise (due to daylight savings etc), and because
|
|
// the number of days per month is variable in the Gregorian calendar, there is a reluctance
|
|
// to transfer time too or from the days element. To give control over this, there are two modes.
|
|
//
|
|
// In precise mode:
|
|
// Multiples of 60 seconds become minutes.
|
|
// Multiples of 60 minutes become hours.
|
|
// Multiples of 12 months become years.
|
|
//
|
|
// Additionally, in imprecise mode:
|
|
// Multiples of 24 hours become days.
|
|
// Multiples of approx. 30.4 days become months.
|
|
//
|
|
// Note that leap seconds are disregarded: every minute is assumed to have 60 seconds.
|
|
func (period Period) Normalise(precise bool) Period {
|
|
const limit = 32670 - (32670 / 60)
|
|
|
|
// can we use a quicker algorithm for HHMMSS with int16 arithmetic?
|
|
if period.years == 0 && period.months == 0 &&
|
|
(!precise || period.days == 0) &&
|
|
period.hours > -limit && period.hours < limit {
|
|
|
|
return period.normaliseHHMMSS(precise)
|
|
}
|
|
|
|
// can we use a quicker algorithm for YYMM with int16 arithmetic?
|
|
if (period.years != 0 || period.months != 0) && //period.months%10 == 0 &&
|
|
period.days == 0 && period.hours == 0 && period.minutes == 0 && period.seconds == 0 {
|
|
|
|
return period.normaliseYYMM()
|
|
}
|
|
|
|
// do things the no-nonsense way using int64 arithmetic
|
|
return period.toPeriod64().normalise64(precise).toPeriod()
|
|
}
|
|
|
|
func (period Period) normaliseHHMMSS(precise bool) Period {
|
|
s := period.Sign()
|
|
ap := period.Abs()
|
|
|
|
// remember that the fields are all fixed-point 1E1
|
|
ap.minutes += (ap.seconds / 600) * 10
|
|
ap.seconds = ap.seconds % 600
|
|
|
|
ap.hours += (ap.minutes / 600) * 10
|
|
ap.minutes = ap.minutes % 600
|
|
|
|
// up to 36 hours stays as hours
|
|
if !precise && ap.hours > 360 {
|
|
ap.days += (ap.hours / 240) * 10
|
|
ap.hours = ap.hours % 240
|
|
}
|
|
|
|
d10 := ap.days % 10
|
|
if d10 != 0 && (ap.hours != 0 || ap.minutes != 0 || ap.seconds != 0) {
|
|
ap.hours += d10 * 24
|
|
ap.days -= d10
|
|
}
|
|
|
|
hh10 := ap.hours % 10
|
|
if hh10 != 0 {
|
|
ap.minutes += hh10 * 60
|
|
ap.hours -= hh10
|
|
}
|
|
|
|
mm10 := ap.minutes % 10
|
|
if mm10 != 0 {
|
|
ap.seconds += mm10 * 60
|
|
ap.minutes -= mm10
|
|
}
|
|
|
|
if s < 0 {
|
|
return ap.Negate()
|
|
}
|
|
return ap
|
|
}
|
|
|
|
func (period Period) normaliseYYMM() Period {
|
|
s := period.Sign()
|
|
ap := period.Abs()
|
|
|
|
// remember that the fields are all fixed-point 1E1
|
|
if ap.months > 129 {
|
|
ap.years += (ap.months / 120) * 10
|
|
ap.months = ap.months % 120
|
|
}
|
|
|
|
y10 := ap.years % 10
|
|
if y10 != 0 && (ap.years < 10 || ap.months != 0) {
|
|
ap.months += y10 * 12
|
|
ap.years -= y10
|
|
}
|
|
|
|
if s < 0 {
|
|
return ap.Negate()
|
|
}
|
|
return ap
|
|
}
|
|
|
|
//-------------------------------------------------------------------------------------------------
|
|
|
|
// used for stages in arithmetic
|
|
type period64 struct {
|
|
years, months, days, hours, minutes, seconds int64
|
|
neg bool
|
|
}
|
|
|
|
func (period Period) toPeriod64() *period64 {
|
|
return &period64{
|
|
int64(period.years), int64(period.months), int64(period.days),
|
|
int64(period.hours), int64(period.minutes), int64(period.seconds),
|
|
false,
|
|
}
|
|
}
|
|
|
|
func (p *period64) toPeriod() Period {
|
|
if p.neg {
|
|
return Period{
|
|
int16(-p.years), int16(-p.months), int16(-p.days),
|
|
int16(-p.hours), int16(-p.minutes), int16(-p.seconds),
|
|
}
|
|
}
|
|
|
|
return Period{
|
|
int16(p.years), int16(p.months), int16(p.days),
|
|
int16(p.hours), int16(p.minutes), int16(p.seconds),
|
|
}
|
|
}
|
|
|
|
func (p *period64) normalise64(precise bool) *period64 {
|
|
return p.abs().rippleUp(precise).moveFractionToRight()
|
|
}
|
|
|
|
func (p *period64) abs() *period64 {
|
|
|
|
if !p.neg {
|
|
if p.years < 0 {
|
|
p.years = -p.years
|
|
p.neg = true
|
|
}
|
|
|
|
if p.months < 0 {
|
|
p.months = -p.months
|
|
p.neg = true
|
|
}
|
|
|
|
if p.days < 0 {
|
|
p.days = -p.days
|
|
p.neg = true
|
|
}
|
|
|
|
if p.hours < 0 {
|
|
p.hours = -p.hours
|
|
p.neg = true
|
|
}
|
|
|
|
if p.minutes < 0 {
|
|
p.minutes = -p.minutes
|
|
p.neg = true
|
|
}
|
|
|
|
if p.seconds < 0 {
|
|
p.seconds = -p.seconds
|
|
p.neg = true
|
|
}
|
|
}
|
|
return p
|
|
}
|
|
|
|
func (p *period64) rippleUp(precise bool) *period64 {
|
|
// remember that the fields are all fixed-point 1E1
|
|
|
|
p.minutes = p.minutes + (p.seconds/600)*10
|
|
p.seconds = p.seconds % 600
|
|
|
|
p.hours = p.hours + (p.minutes/600)*10
|
|
p.minutes = p.minutes % 600
|
|
|
|
// 32670-(32670/60)-(32670/3600) = 32760 - 546 - 9.1 = 32204.9
|
|
if !precise || p.hours > 32204 {
|
|
p.days += (p.hours / 240) * 10
|
|
p.hours = p.hours % 240
|
|
}
|
|
|
|
if !precise || p.days > 32760 {
|
|
dE6 := p.days * oneE6
|
|
p.months += dE6 / daysPerMonthE6
|
|
p.days = (dE6 % daysPerMonthE6) / oneE6
|
|
}
|
|
|
|
p.years = p.years + (p.months/120)*10
|
|
p.months = p.months % 120
|
|
|
|
return p
|
|
}
|
|
|
|
// moveFractionToRight applies the rule that only the smallest field is permitted to have a decimal fraction.
|
|
func (p *period64) moveFractionToRight() *period64 {
|
|
// remember that the fields are all fixed-point 1E1
|
|
|
|
y10 := p.years % 10
|
|
if y10 != 0 && (p.months != 0 || p.days != 0 || p.hours != 0 || p.minutes != 0 || p.seconds != 0) {
|
|
p.months += y10 * 12
|
|
p.years = (p.years / 10) * 10
|
|
}
|
|
|
|
m10 := p.months % 10
|
|
if m10 != 0 && (p.days != 0 || p.hours != 0 || p.minutes != 0 || p.seconds != 0) {
|
|
p.days += (m10 * daysPerMonthE6) / oneE6
|
|
p.months = (p.months / 10) * 10
|
|
}
|
|
|
|
d10 := p.days % 10
|
|
if d10 != 0 && (p.hours != 0 || p.minutes != 0 || p.seconds != 0) {
|
|
p.hours += d10 * 24
|
|
p.days = (p.days / 10) * 10
|
|
}
|
|
|
|
hh10 := p.hours % 10
|
|
if hh10 != 0 && (p.minutes != 0 || p.seconds != 0) {
|
|
p.minutes += hh10 * 60
|
|
p.hours = (p.hours / 10) * 10
|
|
}
|
|
|
|
mm10 := p.minutes % 10
|
|
if mm10 != 0 && p.seconds != 0 {
|
|
p.seconds += mm10 * 60
|
|
p.minutes = (p.minutes / 10) * 10
|
|
}
|
|
|
|
return p
|
|
}
|