mirror of
https://github.com/cwinfo/matterbridge.git
synced 2024-11-22 16:20:26 +00:00
53cafa9f3d
This commit adds support for go/cgo tgs conversion when building with the -tags `cgo` The default binaries are still "pure" go and uses the old way of converting. * Move lottie_convert.py conversion code to its own file * Add optional libtgsconverter * Update vendor * Apply suggestions from code review * Update bridge/helper/libtgsconverter.go Co-authored-by: Wim <wim@42.be>
661 lines
24 KiB
C
661 lines
24 KiB
C
// Copyright 2012 Google Inc. All Rights Reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style license
|
|
// that can be found in the COPYING file in the root of the source
|
|
// tree. An additional intellectual property rights grant can be found
|
|
// in the file PATENTS. All contributing project authors may
|
|
// be found in the AUTHORS file in the root of the source tree.
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// Image transforms and color space conversion methods for lossless decoder.
|
|
//
|
|
// Authors: Vikas Arora (vikaas.arora@gmail.com)
|
|
// Jyrki Alakuijala (jyrki@google.com)
|
|
// Urvang Joshi (urvang@google.com)
|
|
|
|
#include "dsp_dsp.h"
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include "dec_vp8li_dec.h"
|
|
#include "utils_endian_inl_utils.h"
|
|
#include "dsp_lossless.h"
|
|
#include "dsp_lossless_common.h"
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Image transforms.
|
|
|
|
static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
|
|
return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1);
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
|
|
return Average2(Average2(a0, a2), a1);
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
|
|
uint32_t a2, uint32_t a3) {
|
|
return Average2(Average2(a0, a1), Average2(a2, a3));
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t Clip255(uint32_t a) {
|
|
if (a < 256) {
|
|
return a;
|
|
}
|
|
// return 0, when a is a negative integer.
|
|
// return 255, when a is positive.
|
|
return ~a >> 24;
|
|
}
|
|
|
|
static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
|
|
return Clip255(a + b - c);
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
|
|
uint32_t c2) {
|
|
const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
|
|
const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
|
|
(c1 >> 16) & 0xff,
|
|
(c2 >> 16) & 0xff);
|
|
const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
|
|
(c1 >> 8) & 0xff,
|
|
(c2 >> 8) & 0xff);
|
|
const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
|
|
return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
|
|
}
|
|
|
|
static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
|
|
return Clip255(a + (a - b) / 2);
|
|
}
|
|
|
|
static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
|
|
uint32_t c2) {
|
|
const uint32_t ave = Average2(c0, c1);
|
|
const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
|
|
const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
|
|
const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
|
|
const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
|
|
return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
|
|
}
|
|
|
|
// gcc <= 4.9 on ARM generates incorrect code in Select() when Sub3() is
|
|
// inlined.
|
|
#if defined(__arm__) && defined(__GNUC__) && LOCAL_GCC_VERSION <= 0x409
|
|
# define LOCAL_INLINE __attribute__ ((noinline))
|
|
#else
|
|
# define LOCAL_INLINE WEBP_INLINE
|
|
#endif
|
|
|
|
static LOCAL_INLINE int Sub3(int a, int b, int c) {
|
|
const int pb = b - c;
|
|
const int pa = a - c;
|
|
return abs(pb) - abs(pa);
|
|
}
|
|
|
|
#undef LOCAL_INLINE
|
|
|
|
static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
|
|
const int pa_minus_pb =
|
|
Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
|
|
Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
|
|
Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
|
|
Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
|
|
return (pa_minus_pb <= 0) ? a : b;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Predictors
|
|
|
|
uint32_t VP8LPredictor0_C(uint32_t left, const uint32_t* const top) {
|
|
(void)top;
|
|
(void)left;
|
|
return ARGB_BLACK;
|
|
}
|
|
uint32_t VP8LPredictor1_C(uint32_t left, const uint32_t* const top) {
|
|
(void)top;
|
|
return left;
|
|
}
|
|
uint32_t VP8LPredictor2_C(uint32_t left, const uint32_t* const top) {
|
|
(void)left;
|
|
return top[0];
|
|
}
|
|
uint32_t VP8LPredictor3_C(uint32_t left, const uint32_t* const top) {
|
|
(void)left;
|
|
return top[1];
|
|
}
|
|
uint32_t VP8LPredictor4_C(uint32_t left, const uint32_t* const top) {
|
|
(void)left;
|
|
return top[-1];
|
|
}
|
|
uint32_t VP8LPredictor5_C(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Average3(left, top[0], top[1]);
|
|
return pred;
|
|
}
|
|
uint32_t VP8LPredictor6_C(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Average2(left, top[-1]);
|
|
return pred;
|
|
}
|
|
uint32_t VP8LPredictor7_C(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Average2(left, top[0]);
|
|
return pred;
|
|
}
|
|
uint32_t VP8LPredictor8_C(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Average2(top[-1], top[0]);
|
|
(void)left;
|
|
return pred;
|
|
}
|
|
uint32_t VP8LPredictor9_C(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Average2(top[0], top[1]);
|
|
(void)left;
|
|
return pred;
|
|
}
|
|
uint32_t VP8LPredictor10_C(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Average4(left, top[-1], top[0], top[1]);
|
|
return pred;
|
|
}
|
|
uint32_t VP8LPredictor11_C(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = Select(top[0], left, top[-1]);
|
|
return pred;
|
|
}
|
|
uint32_t VP8LPredictor12_C(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]);
|
|
return pred;
|
|
}
|
|
uint32_t VP8LPredictor13_C(uint32_t left, const uint32_t* const top) {
|
|
const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]);
|
|
return pred;
|
|
}
|
|
|
|
static void PredictorAdd0_C(const uint32_t* in, const uint32_t* upper,
|
|
int num_pixels, uint32_t* out) {
|
|
int x;
|
|
(void)upper;
|
|
for (x = 0; x < num_pixels; ++x) out[x] = VP8LAddPixels(in[x], ARGB_BLACK);
|
|
}
|
|
static void PredictorAdd1_C(const uint32_t* in, const uint32_t* upper,
|
|
int num_pixels, uint32_t* out) {
|
|
int i;
|
|
uint32_t left = out[-1];
|
|
(void)upper;
|
|
for (i = 0; i < num_pixels; ++i) {
|
|
out[i] = left = VP8LAddPixels(in[i], left);
|
|
}
|
|
}
|
|
GENERATE_PREDICTOR_ADD(VP8LPredictor2_C, PredictorAdd2_C)
|
|
GENERATE_PREDICTOR_ADD(VP8LPredictor3_C, PredictorAdd3_C)
|
|
GENERATE_PREDICTOR_ADD(VP8LPredictor4_C, PredictorAdd4_C)
|
|
GENERATE_PREDICTOR_ADD(VP8LPredictor5_C, PredictorAdd5_C)
|
|
GENERATE_PREDICTOR_ADD(VP8LPredictor6_C, PredictorAdd6_C)
|
|
GENERATE_PREDICTOR_ADD(VP8LPredictor7_C, PredictorAdd7_C)
|
|
GENERATE_PREDICTOR_ADD(VP8LPredictor8_C, PredictorAdd8_C)
|
|
GENERATE_PREDICTOR_ADD(VP8LPredictor9_C, PredictorAdd9_C)
|
|
GENERATE_PREDICTOR_ADD(VP8LPredictor10_C, PredictorAdd10_C)
|
|
GENERATE_PREDICTOR_ADD(VP8LPredictor11_C, PredictorAdd11_C)
|
|
GENERATE_PREDICTOR_ADD(VP8LPredictor12_C, PredictorAdd12_C)
|
|
GENERATE_PREDICTOR_ADD(VP8LPredictor13_C, PredictorAdd13_C)
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
// Inverse prediction.
|
|
static void PredictorInverseTransform_C(const VP8LTransform* const transform,
|
|
int y_start, int y_end,
|
|
const uint32_t* in, uint32_t* out) {
|
|
const int width = transform->xsize_;
|
|
if (y_start == 0) { // First Row follows the L (mode=1) mode.
|
|
PredictorAdd0_C(in, NULL, 1, out);
|
|
PredictorAdd1_C(in + 1, NULL, width - 1, out + 1);
|
|
in += width;
|
|
out += width;
|
|
++y_start;
|
|
}
|
|
|
|
{
|
|
int y = y_start;
|
|
const int tile_width = 1 << transform->bits_;
|
|
const int mask = tile_width - 1;
|
|
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
|
|
const uint32_t* pred_mode_base =
|
|
transform->data_ + (y >> transform->bits_) * tiles_per_row;
|
|
|
|
while (y < y_end) {
|
|
const uint32_t* pred_mode_src = pred_mode_base;
|
|
int x = 1;
|
|
// First pixel follows the T (mode=2) mode.
|
|
PredictorAdd2_C(in, out - width, 1, out);
|
|
// .. the rest:
|
|
while (x < width) {
|
|
const VP8LPredictorAddSubFunc pred_func =
|
|
VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf];
|
|
int x_end = (x & ~mask) + tile_width;
|
|
if (x_end > width) x_end = width;
|
|
pred_func(in + x, out + x - width, x_end - x, out + x);
|
|
x = x_end;
|
|
}
|
|
in += width;
|
|
out += width;
|
|
++y;
|
|
if ((y & mask) == 0) { // Use the same mask, since tiles are squares.
|
|
pred_mode_base += tiles_per_row;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add green to blue and red channels (i.e. perform the inverse transform of
|
|
// 'subtract green').
|
|
void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels,
|
|
uint32_t* dst) {
|
|
int i;
|
|
for (i = 0; i < num_pixels; ++i) {
|
|
const uint32_t argb = src[i];
|
|
const uint32_t green = ((argb >> 8) & 0xff);
|
|
uint32_t red_blue = (argb & 0x00ff00ffu);
|
|
red_blue += (green << 16) | green;
|
|
red_blue &= 0x00ff00ffu;
|
|
dst[i] = (argb & 0xff00ff00u) | red_blue;
|
|
}
|
|
}
|
|
|
|
static WEBP_INLINE int ColorTransformDelta(int8_t color_pred,
|
|
int8_t color) {
|
|
return ((int)color_pred * color) >> 5;
|
|
}
|
|
|
|
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
|
|
VP8LMultipliers* const m) {
|
|
m->green_to_red_ = (color_code >> 0) & 0xff;
|
|
m->green_to_blue_ = (color_code >> 8) & 0xff;
|
|
m->red_to_blue_ = (color_code >> 16) & 0xff;
|
|
}
|
|
|
|
void VP8LTransformColorInverse_C(const VP8LMultipliers* const m,
|
|
const uint32_t* src, int num_pixels,
|
|
uint32_t* dst) {
|
|
int i;
|
|
for (i = 0; i < num_pixels; ++i) {
|
|
const uint32_t argb = src[i];
|
|
const int8_t green = (int8_t)(argb >> 8);
|
|
const uint32_t red = argb >> 16;
|
|
int new_red = red & 0xff;
|
|
int new_blue = argb & 0xff;
|
|
new_red += ColorTransformDelta(m->green_to_red_, green);
|
|
new_red &= 0xff;
|
|
new_blue += ColorTransformDelta(m->green_to_blue_, green);
|
|
new_blue += ColorTransformDelta(m->red_to_blue_, (int8_t)new_red);
|
|
new_blue &= 0xff;
|
|
dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
|
|
}
|
|
}
|
|
|
|
// Color space inverse transform.
|
|
static void ColorSpaceInverseTransform_C(const VP8LTransform* const transform,
|
|
int y_start, int y_end,
|
|
const uint32_t* src, uint32_t* dst) {
|
|
const int width = transform->xsize_;
|
|
const int tile_width = 1 << transform->bits_;
|
|
const int mask = tile_width - 1;
|
|
const int safe_width = width & ~mask;
|
|
const int remaining_width = width - safe_width;
|
|
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
|
|
int y = y_start;
|
|
const uint32_t* pred_row =
|
|
transform->data_ + (y >> transform->bits_) * tiles_per_row;
|
|
|
|
while (y < y_end) {
|
|
const uint32_t* pred = pred_row;
|
|
VP8LMultipliers m = { 0, 0, 0 };
|
|
const uint32_t* const src_safe_end = src + safe_width;
|
|
const uint32_t* const src_end = src + width;
|
|
while (src < src_safe_end) {
|
|
ColorCodeToMultipliers(*pred++, &m);
|
|
VP8LTransformColorInverse(&m, src, tile_width, dst);
|
|
src += tile_width;
|
|
dst += tile_width;
|
|
}
|
|
if (src < src_end) { // Left-overs using C-version.
|
|
ColorCodeToMultipliers(*pred++, &m);
|
|
VP8LTransformColorInverse(&m, src, remaining_width, dst);
|
|
src += remaining_width;
|
|
dst += remaining_width;
|
|
}
|
|
++y;
|
|
if ((y & mask) == 0) pred_row += tiles_per_row;
|
|
}
|
|
}
|
|
|
|
// Separate out pixels packed together using pixel-bundling.
|
|
// We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t).
|
|
#define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \
|
|
GET_INDEX, GET_VALUE) \
|
|
static void F_NAME(const TYPE* src, const uint32_t* const color_map, \
|
|
TYPE* dst, int y_start, int y_end, int width) { \
|
|
int y; \
|
|
for (y = y_start; y < y_end; ++y) { \
|
|
int x; \
|
|
for (x = 0; x < width; ++x) { \
|
|
*dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \
|
|
} \
|
|
} \
|
|
} \
|
|
STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \
|
|
int y_start, int y_end, const TYPE* src, \
|
|
TYPE* dst) { \
|
|
int y; \
|
|
const int bits_per_pixel = 8 >> transform->bits_; \
|
|
const int width = transform->xsize_; \
|
|
const uint32_t* const color_map = transform->data_; \
|
|
if (bits_per_pixel < 8) { \
|
|
const int pixels_per_byte = 1 << transform->bits_; \
|
|
const int count_mask = pixels_per_byte - 1; \
|
|
const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \
|
|
for (y = y_start; y < y_end; ++y) { \
|
|
uint32_t packed_pixels = 0; \
|
|
int x; \
|
|
for (x = 0; x < width; ++x) { \
|
|
/* We need to load fresh 'packed_pixels' once every */ \
|
|
/* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \
|
|
/* is a power of 2, so can just use a mask for that, instead of */ \
|
|
/* decrementing a counter. */ \
|
|
if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \
|
|
*dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \
|
|
packed_pixels >>= bits_per_pixel; \
|
|
} \
|
|
} \
|
|
} else { \
|
|
VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \
|
|
} \
|
|
}
|
|
|
|
COLOR_INDEX_INVERSE(ColorIndexInverseTransform_C, MapARGB_C, static,
|
|
uint32_t, 32b, VP8GetARGBIndex, VP8GetARGBValue)
|
|
COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha_C, ,
|
|
uint8_t, 8b, VP8GetAlphaIndex, VP8GetAlphaValue)
|
|
|
|
#undef COLOR_INDEX_INVERSE
|
|
|
|
void VP8LInverseTransform(const VP8LTransform* const transform,
|
|
int row_start, int row_end,
|
|
const uint32_t* const in, uint32_t* const out) {
|
|
const int width = transform->xsize_;
|
|
assert(row_start < row_end);
|
|
assert(row_end <= transform->ysize_);
|
|
switch (transform->type_) {
|
|
case SUBTRACT_GREEN:
|
|
VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out);
|
|
break;
|
|
case PREDICTOR_TRANSFORM:
|
|
PredictorInverseTransform_C(transform, row_start, row_end, in, out);
|
|
if (row_end != transform->ysize_) {
|
|
// The last predicted row in this iteration will be the top-pred row
|
|
// for the first row in next iteration.
|
|
memcpy(out - width, out + (row_end - row_start - 1) * width,
|
|
width * sizeof(*out));
|
|
}
|
|
break;
|
|
case CROSS_COLOR_TRANSFORM:
|
|
ColorSpaceInverseTransform_C(transform, row_start, row_end, in, out);
|
|
break;
|
|
case COLOR_INDEXING_TRANSFORM:
|
|
if (in == out && transform->bits_ > 0) {
|
|
// Move packed pixels to the end of unpacked region, so that unpacking
|
|
// can occur seamlessly.
|
|
// Also, note that this is the only transform that applies on
|
|
// the effective width of VP8LSubSampleSize(xsize_, bits_). All other
|
|
// transforms work on effective width of xsize_.
|
|
const int out_stride = (row_end - row_start) * width;
|
|
const int in_stride = (row_end - row_start) *
|
|
VP8LSubSampleSize(transform->xsize_, transform->bits_);
|
|
uint32_t* const src = out + out_stride - in_stride;
|
|
memmove(src, out, in_stride * sizeof(*src));
|
|
ColorIndexInverseTransform_C(transform, row_start, row_end, src, out);
|
|
} else {
|
|
ColorIndexInverseTransform_C(transform, row_start, row_end, in, out);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Color space conversion.
|
|
|
|
static int is_big_endian(void) {
|
|
static const union {
|
|
uint16_t w;
|
|
uint8_t b[2];
|
|
} tmp = { 1 };
|
|
return (tmp.b[0] != 1);
|
|
}
|
|
|
|
void VP8LConvertBGRAToRGB_C(const uint32_t* src,
|
|
int num_pixels, uint8_t* dst) {
|
|
const uint32_t* const src_end = src + num_pixels;
|
|
while (src < src_end) {
|
|
const uint32_t argb = *src++;
|
|
*dst++ = (argb >> 16) & 0xff;
|
|
*dst++ = (argb >> 8) & 0xff;
|
|
*dst++ = (argb >> 0) & 0xff;
|
|
}
|
|
}
|
|
|
|
void VP8LConvertBGRAToRGBA_C(const uint32_t* src,
|
|
int num_pixels, uint8_t* dst) {
|
|
const uint32_t* const src_end = src + num_pixels;
|
|
while (src < src_end) {
|
|
const uint32_t argb = *src++;
|
|
*dst++ = (argb >> 16) & 0xff;
|
|
*dst++ = (argb >> 8) & 0xff;
|
|
*dst++ = (argb >> 0) & 0xff;
|
|
*dst++ = (argb >> 24) & 0xff;
|
|
}
|
|
}
|
|
|
|
void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src,
|
|
int num_pixels, uint8_t* dst) {
|
|
const uint32_t* const src_end = src + num_pixels;
|
|
while (src < src_end) {
|
|
const uint32_t argb = *src++;
|
|
const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf);
|
|
const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf);
|
|
#if (WEBP_SWAP_16BIT_CSP == 1)
|
|
*dst++ = ba;
|
|
*dst++ = rg;
|
|
#else
|
|
*dst++ = rg;
|
|
*dst++ = ba;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void VP8LConvertBGRAToRGB565_C(const uint32_t* src,
|
|
int num_pixels, uint8_t* dst) {
|
|
const uint32_t* const src_end = src + num_pixels;
|
|
while (src < src_end) {
|
|
const uint32_t argb = *src++;
|
|
const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7);
|
|
const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f);
|
|
#if (WEBP_SWAP_16BIT_CSP == 1)
|
|
*dst++ = gb;
|
|
*dst++ = rg;
|
|
#else
|
|
*dst++ = rg;
|
|
*dst++ = gb;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void VP8LConvertBGRAToBGR_C(const uint32_t* src,
|
|
int num_pixels, uint8_t* dst) {
|
|
const uint32_t* const src_end = src + num_pixels;
|
|
while (src < src_end) {
|
|
const uint32_t argb = *src++;
|
|
*dst++ = (argb >> 0) & 0xff;
|
|
*dst++ = (argb >> 8) & 0xff;
|
|
*dst++ = (argb >> 16) & 0xff;
|
|
}
|
|
}
|
|
|
|
static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst,
|
|
int swap_on_big_endian) {
|
|
if (is_big_endian() == swap_on_big_endian) {
|
|
const uint32_t* const src_end = src + num_pixels;
|
|
while (src < src_end) {
|
|
const uint32_t argb = *src++;
|
|
WebPUint32ToMem(dst, BSwap32(argb));
|
|
dst += sizeof(argb);
|
|
}
|
|
} else {
|
|
memcpy(dst, src, num_pixels * sizeof(*src));
|
|
}
|
|
}
|
|
|
|
void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
|
|
WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) {
|
|
switch (out_colorspace) {
|
|
case MODE_RGB:
|
|
VP8LConvertBGRAToRGB(in_data, num_pixels, rgba);
|
|
break;
|
|
case MODE_RGBA:
|
|
VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
|
|
break;
|
|
case MODE_rgbA:
|
|
VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
|
|
WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
|
|
break;
|
|
case MODE_BGR:
|
|
VP8LConvertBGRAToBGR(in_data, num_pixels, rgba);
|
|
break;
|
|
case MODE_BGRA:
|
|
CopyOrSwap(in_data, num_pixels, rgba, 1);
|
|
break;
|
|
case MODE_bgrA:
|
|
CopyOrSwap(in_data, num_pixels, rgba, 1);
|
|
WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
|
|
break;
|
|
case MODE_ARGB:
|
|
CopyOrSwap(in_data, num_pixels, rgba, 0);
|
|
break;
|
|
case MODE_Argb:
|
|
CopyOrSwap(in_data, num_pixels, rgba, 0);
|
|
WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0);
|
|
break;
|
|
case MODE_RGBA_4444:
|
|
VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
|
|
break;
|
|
case MODE_rgbA_4444:
|
|
VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
|
|
WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0);
|
|
break;
|
|
case MODE_RGB_565:
|
|
VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba);
|
|
break;
|
|
default:
|
|
assert(0); // Code flow should not reach here.
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed;
|
|
VP8LPredictorAddSubFunc VP8LPredictorsAdd[16];
|
|
VP8LPredictorFunc VP8LPredictors[16];
|
|
|
|
// exposed plain-C implementations
|
|
VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16];
|
|
|
|
VP8LTransformColorInverseFunc VP8LTransformColorInverse;
|
|
|
|
VP8LConvertFunc VP8LConvertBGRAToRGB;
|
|
VP8LConvertFunc VP8LConvertBGRAToRGBA;
|
|
VP8LConvertFunc VP8LConvertBGRAToRGBA4444;
|
|
VP8LConvertFunc VP8LConvertBGRAToRGB565;
|
|
VP8LConvertFunc VP8LConvertBGRAToBGR;
|
|
|
|
VP8LMapARGBFunc VP8LMapColor32b;
|
|
VP8LMapAlphaFunc VP8LMapColor8b;
|
|
|
|
extern void VP8LDspInitSSE2(void);
|
|
extern void VP8LDspInitNEON(void);
|
|
extern void VP8LDspInitMIPSdspR2(void);
|
|
extern void VP8LDspInitMSA(void);
|
|
|
|
#define COPY_PREDICTOR_ARRAY(IN, OUT) do { \
|
|
(OUT)[0] = IN##0_C; \
|
|
(OUT)[1] = IN##1_C; \
|
|
(OUT)[2] = IN##2_C; \
|
|
(OUT)[3] = IN##3_C; \
|
|
(OUT)[4] = IN##4_C; \
|
|
(OUT)[5] = IN##5_C; \
|
|
(OUT)[6] = IN##6_C; \
|
|
(OUT)[7] = IN##7_C; \
|
|
(OUT)[8] = IN##8_C; \
|
|
(OUT)[9] = IN##9_C; \
|
|
(OUT)[10] = IN##10_C; \
|
|
(OUT)[11] = IN##11_C; \
|
|
(OUT)[12] = IN##12_C; \
|
|
(OUT)[13] = IN##13_C; \
|
|
(OUT)[14] = IN##0_C; /* <- padding security sentinels*/ \
|
|
(OUT)[15] = IN##0_C; \
|
|
} while (0);
|
|
|
|
WEBP_DSP_INIT_FUNC(VP8LDspInit) {
|
|
COPY_PREDICTOR_ARRAY(VP8LPredictor, VP8LPredictors)
|
|
COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd)
|
|
COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C)
|
|
|
|
#if !WEBP_NEON_OMIT_C_CODE
|
|
VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C;
|
|
|
|
VP8LTransformColorInverse = VP8LTransformColorInverse_C;
|
|
|
|
VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C;
|
|
VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C;
|
|
VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C;
|
|
#endif
|
|
|
|
VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C;
|
|
VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C;
|
|
|
|
VP8LMapColor32b = MapARGB_C;
|
|
VP8LMapColor8b = MapAlpha_C;
|
|
|
|
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
|
|
if (VP8GetCPUInfo != NULL) {
|
|
#if defined(WEBP_USE_SSE2)
|
|
if (VP8GetCPUInfo(kSSE2)) {
|
|
VP8LDspInitSSE2();
|
|
}
|
|
#endif
|
|
#if defined(WEBP_USE_MIPS_DSP_R2)
|
|
if (VP8GetCPUInfo(kMIPSdspR2)) {
|
|
VP8LDspInitMIPSdspR2();
|
|
}
|
|
#endif
|
|
#if defined(WEBP_USE_MSA)
|
|
if (VP8GetCPUInfo(kMSA)) {
|
|
VP8LDspInitMSA();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if defined(WEBP_USE_NEON)
|
|
if (WEBP_NEON_OMIT_C_CODE ||
|
|
(VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) {
|
|
VP8LDspInitNEON();
|
|
}
|
|
#endif
|
|
|
|
assert(VP8LAddGreenToBlueAndRed != NULL);
|
|
assert(VP8LTransformColorInverse != NULL);
|
|
assert(VP8LConvertBGRAToRGBA != NULL);
|
|
assert(VP8LConvertBGRAToRGB != NULL);
|
|
assert(VP8LConvertBGRAToBGR != NULL);
|
|
assert(VP8LConvertBGRAToRGBA4444 != NULL);
|
|
assert(VP8LConvertBGRAToRGB565 != NULL);
|
|
assert(VP8LMapColor32b != NULL);
|
|
assert(VP8LMapColor8b != NULL);
|
|
}
|
|
#undef COPY_PREDICTOR_ARRAY
|
|
|
|
//------------------------------------------------------------------------------
|