5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2024-11-14 07:20:27 +00:00
matterbridge/vendor/golang.org/x/image/vp8/decode.go
Wim 26a7e35f27
Add MediaConvertWebPToPNG option (telegram). (#741)
* Add MediaConvertWebPToPNG option (telegram).

When enabled matterbridge will convert .webp files to .png files
before uploading them to the mediaserver of the other bridges.

Fixes #398
2019-02-27 00:41:50 +01:00

404 lines
12 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package vp8 implements a decoder for the VP8 lossy image format.
//
// The VP8 specification is RFC 6386.
package vp8 // import "golang.org/x/image/vp8"
// This file implements the top-level decoding algorithm.
import (
"errors"
"image"
"io"
)
// limitReader wraps an io.Reader to read at most n bytes from it.
type limitReader struct {
r io.Reader
n int
}
// ReadFull reads exactly len(p) bytes into p.
func (r *limitReader) ReadFull(p []byte) error {
if len(p) > r.n {
return io.ErrUnexpectedEOF
}
n, err := io.ReadFull(r.r, p)
r.n -= n
return err
}
// FrameHeader is a frame header, as specified in section 9.1.
type FrameHeader struct {
KeyFrame bool
VersionNumber uint8
ShowFrame bool
FirstPartitionLen uint32
Width int
Height int
XScale uint8
YScale uint8
}
const (
nSegment = 4
nSegmentProb = 3
)
// segmentHeader holds segment-related header information.
type segmentHeader struct {
useSegment bool
updateMap bool
relativeDelta bool
quantizer [nSegment]int8
filterStrength [nSegment]int8
prob [nSegmentProb]uint8
}
const (
nRefLFDelta = 4
nModeLFDelta = 4
)
// filterHeader holds filter-related header information.
type filterHeader struct {
simple bool
level int8
sharpness uint8
useLFDelta bool
refLFDelta [nRefLFDelta]int8
modeLFDelta [nModeLFDelta]int8
perSegmentLevel [nSegment]int8
}
// mb is the per-macroblock decode state. A decoder maintains mbw+1 of these
// as it is decoding macroblocks left-to-right and top-to-bottom: mbw for the
// macroblocks in the row above, and one for the macroblock to the left.
type mb struct {
// pred is the predictor mode for the 4 bottom or right 4x4 luma regions.
pred [4]uint8
// nzMask is a mask of 8 bits: 4 for the bottom or right 4x4 luma regions,
// and 2 + 2 for the bottom or right 4x4 chroma regions. A 1 bit indicates
// that region has non-zero coefficients.
nzMask uint8
// nzY16 is a 0/1 value that is 1 if the macroblock used Y16 prediction and
// had non-zero coefficients.
nzY16 uint8
}
// Decoder decodes VP8 bitstreams into frames. Decoding one frame consists of
// calling Init, DecodeFrameHeader and then DecodeFrame in that order.
// A Decoder can be re-used to decode multiple frames.
type Decoder struct {
// r is the input bitsream.
r limitReader
// scratch is a scratch buffer.
scratch [8]byte
// img is the YCbCr image to decode into.
img *image.YCbCr
// mbw and mbh are the number of 16x16 macroblocks wide and high the image is.
mbw, mbh int
// frameHeader is the frame header. When decoding multiple frames,
// frames that aren't key frames will inherit the Width, Height,
// XScale and YScale of the most recent key frame.
frameHeader FrameHeader
// Other headers.
segmentHeader segmentHeader
filterHeader filterHeader
// The image data is divided into a number of independent partitions.
// There is 1 "first partition" and between 1 and 8 "other partitions"
// for coefficient data.
fp partition
op [8]partition
nOP int
// Quantization factors.
quant [nSegment]quant
// DCT/WHT coefficient decoding probabilities.
tokenProb [nPlane][nBand][nContext][nProb]uint8
useSkipProb bool
skipProb uint8
// Loop filter parameters.
filterParams [nSegment][2]filterParam
perMBFilterParams []filterParam
// The eight fields below relate to the current macroblock being decoded.
//
// Segment-based adjustments.
segment int
// Per-macroblock state for the macroblock immediately left of and those
// macroblocks immediately above the current macroblock.
leftMB mb
upMB []mb
// Bitmasks for which 4x4 regions of coeff contain non-zero coefficients.
nzDCMask, nzACMask uint32
// Predictor modes.
usePredY16 bool // The libwebp C code calls this !is_i4x4_.
predY16 uint8
predC8 uint8
predY4 [4][4]uint8
// The two fields below form a workspace for reconstructing a macroblock.
// Their specific sizes are documented in reconstruct.go.
coeff [1*16*16 + 2*8*8 + 1*4*4]int16
ybr [1 + 16 + 1 + 8][32]uint8
}
// NewDecoder returns a new Decoder.
func NewDecoder() *Decoder {
return &Decoder{}
}
// Init initializes the decoder to read at most n bytes from r.
func (d *Decoder) Init(r io.Reader, n int) {
d.r = limitReader{r, n}
}
// DecodeFrameHeader decodes the frame header.
func (d *Decoder) DecodeFrameHeader() (fh FrameHeader, err error) {
// All frame headers are at least 3 bytes long.
b := d.scratch[:3]
if err = d.r.ReadFull(b); err != nil {
return
}
d.frameHeader.KeyFrame = (b[0] & 1) == 0
d.frameHeader.VersionNumber = (b[0] >> 1) & 7
d.frameHeader.ShowFrame = (b[0]>>4)&1 == 1
d.frameHeader.FirstPartitionLen = uint32(b[0])>>5 | uint32(b[1])<<3 | uint32(b[2])<<11
if !d.frameHeader.KeyFrame {
return d.frameHeader, nil
}
// Frame headers for key frames are an additional 7 bytes long.
b = d.scratch[:7]
if err = d.r.ReadFull(b); err != nil {
return
}
// Check the magic sync code.
if b[0] != 0x9d || b[1] != 0x01 || b[2] != 0x2a {
err = errors.New("vp8: invalid format")
return
}
d.frameHeader.Width = int(b[4]&0x3f)<<8 | int(b[3])
d.frameHeader.Height = int(b[6]&0x3f)<<8 | int(b[5])
d.frameHeader.XScale = b[4] >> 6
d.frameHeader.YScale = b[6] >> 6
d.mbw = (d.frameHeader.Width + 0x0f) >> 4
d.mbh = (d.frameHeader.Height + 0x0f) >> 4
d.segmentHeader = segmentHeader{
prob: [3]uint8{0xff, 0xff, 0xff},
}
d.tokenProb = defaultTokenProb
d.segment = 0
return d.frameHeader, nil
}
// ensureImg ensures that d.img is large enough to hold the decoded frame.
func (d *Decoder) ensureImg() {
if d.img != nil {
p0, p1 := d.img.Rect.Min, d.img.Rect.Max
if p0.X == 0 && p0.Y == 0 && p1.X >= 16*d.mbw && p1.Y >= 16*d.mbh {
return
}
}
m := image.NewYCbCr(image.Rect(0, 0, 16*d.mbw, 16*d.mbh), image.YCbCrSubsampleRatio420)
d.img = m.SubImage(image.Rect(0, 0, d.frameHeader.Width, d.frameHeader.Height)).(*image.YCbCr)
d.perMBFilterParams = make([]filterParam, d.mbw*d.mbh)
d.upMB = make([]mb, d.mbw)
}
// parseSegmentHeader parses the segment header, as specified in section 9.3.
func (d *Decoder) parseSegmentHeader() {
d.segmentHeader.useSegment = d.fp.readBit(uniformProb)
if !d.segmentHeader.useSegment {
d.segmentHeader.updateMap = false
return
}
d.segmentHeader.updateMap = d.fp.readBit(uniformProb)
if d.fp.readBit(uniformProb) {
d.segmentHeader.relativeDelta = !d.fp.readBit(uniformProb)
for i := range d.segmentHeader.quantizer {
d.segmentHeader.quantizer[i] = int8(d.fp.readOptionalInt(uniformProb, 7))
}
for i := range d.segmentHeader.filterStrength {
d.segmentHeader.filterStrength[i] = int8(d.fp.readOptionalInt(uniformProb, 6))
}
}
if !d.segmentHeader.updateMap {
return
}
for i := range d.segmentHeader.prob {
if d.fp.readBit(uniformProb) {
d.segmentHeader.prob[i] = uint8(d.fp.readUint(uniformProb, 8))
} else {
d.segmentHeader.prob[i] = 0xff
}
}
}
// parseFilterHeader parses the filter header, as specified in section 9.4.
func (d *Decoder) parseFilterHeader() {
d.filterHeader.simple = d.fp.readBit(uniformProb)
d.filterHeader.level = int8(d.fp.readUint(uniformProb, 6))
d.filterHeader.sharpness = uint8(d.fp.readUint(uniformProb, 3))
d.filterHeader.useLFDelta = d.fp.readBit(uniformProb)
if d.filterHeader.useLFDelta && d.fp.readBit(uniformProb) {
for i := range d.filterHeader.refLFDelta {
d.filterHeader.refLFDelta[i] = int8(d.fp.readOptionalInt(uniformProb, 6))
}
for i := range d.filterHeader.modeLFDelta {
d.filterHeader.modeLFDelta[i] = int8(d.fp.readOptionalInt(uniformProb, 6))
}
}
if d.filterHeader.level == 0 {
return
}
if d.segmentHeader.useSegment {
for i := range d.filterHeader.perSegmentLevel {
strength := d.segmentHeader.filterStrength[i]
if d.segmentHeader.relativeDelta {
strength += d.filterHeader.level
}
d.filterHeader.perSegmentLevel[i] = strength
}
} else {
d.filterHeader.perSegmentLevel[0] = d.filterHeader.level
}
d.computeFilterParams()
}
// parseOtherPartitions parses the other partitions, as specified in section 9.5.
func (d *Decoder) parseOtherPartitions() error {
const maxNOP = 1 << 3
var partLens [maxNOP]int
d.nOP = 1 << d.fp.readUint(uniformProb, 2)
// The final partition length is implied by the remaining chunk data
// (d.r.n) and the other d.nOP-1 partition lengths. Those d.nOP-1 partition
// lengths are stored as 24-bit uints, i.e. up to 16 MiB per partition.
n := 3 * (d.nOP - 1)
partLens[d.nOP-1] = d.r.n - n
if partLens[d.nOP-1] < 0 {
return io.ErrUnexpectedEOF
}
if n > 0 {
buf := make([]byte, n)
if err := d.r.ReadFull(buf); err != nil {
return err
}
for i := 0; i < d.nOP-1; i++ {
pl := int(buf[3*i+0]) | int(buf[3*i+1])<<8 | int(buf[3*i+2])<<16
if pl > partLens[d.nOP-1] {
return io.ErrUnexpectedEOF
}
partLens[i] = pl
partLens[d.nOP-1] -= pl
}
}
// We check if the final partition length can also fit into a 24-bit uint.
// Strictly speaking, this isn't part of the spec, but it guards against a
// malicious WEBP image that is too large to ReadFull the encoded DCT
// coefficients into memory, whether that's because the actual WEBP file is
// too large, or whether its RIFF metadata lists too large a chunk.
if 1<<24 <= partLens[d.nOP-1] {
return errors.New("vp8: too much data to decode")
}
buf := make([]byte, d.r.n)
if err := d.r.ReadFull(buf); err != nil {
return err
}
for i, pl := range partLens {
if i == d.nOP {
break
}
d.op[i].init(buf[:pl])
buf = buf[pl:]
}
return nil
}
// parseOtherHeaders parses header information other than the frame header.
func (d *Decoder) parseOtherHeaders() error {
// Initialize and parse the first partition.
firstPartition := make([]byte, d.frameHeader.FirstPartitionLen)
if err := d.r.ReadFull(firstPartition); err != nil {
return err
}
d.fp.init(firstPartition)
if d.frameHeader.KeyFrame {
// Read and ignore the color space and pixel clamp values. They are
// specified in section 9.2, but are unimplemented.
d.fp.readBit(uniformProb)
d.fp.readBit(uniformProb)
}
d.parseSegmentHeader()
d.parseFilterHeader()
if err := d.parseOtherPartitions(); err != nil {
return err
}
d.parseQuant()
if !d.frameHeader.KeyFrame {
// Golden and AltRef frames are specified in section 9.7.
// TODO(nigeltao): implement. Note that they are only used for video, not still images.
return errors.New("vp8: Golden / AltRef frames are not implemented")
}
// Read and ignore the refreshLastFrameBuffer bit, specified in section 9.8.
// It applies only to video, and not still images.
d.fp.readBit(uniformProb)
d.parseTokenProb()
d.useSkipProb = d.fp.readBit(uniformProb)
if d.useSkipProb {
d.skipProb = uint8(d.fp.readUint(uniformProb, 8))
}
if d.fp.unexpectedEOF {
return io.ErrUnexpectedEOF
}
return nil
}
// DecodeFrame decodes the frame and returns it as an YCbCr image.
// The image's contents are valid up until the next call to Decoder.Init.
func (d *Decoder) DecodeFrame() (*image.YCbCr, error) {
d.ensureImg()
if err := d.parseOtherHeaders(); err != nil {
return nil, err
}
// Reconstruct the rows.
for mbx := 0; mbx < d.mbw; mbx++ {
d.upMB[mbx] = mb{}
}
for mby := 0; mby < d.mbh; mby++ {
d.leftMB = mb{}
for mbx := 0; mbx < d.mbw; mbx++ {
skip := d.reconstruct(mbx, mby)
fs := d.filterParams[d.segment][btou(!d.usePredY16)]
fs.inner = fs.inner || !skip
d.perMBFilterParams[d.mbw*mby+mbx] = fs
}
}
if d.fp.unexpectedEOF {
return nil, io.ErrUnexpectedEOF
}
for i := 0; i < d.nOP; i++ {
if d.op[i].unexpectedEOF {
return nil, io.ErrUnexpectedEOF
}
}
// Apply the loop filter.
//
// Even if we are using per-segment levels, section 15 says that "loop
// filtering must be skipped entirely if loop_filter_level at either the
// frame header level or macroblock override level is 0".
if d.filterHeader.level != 0 {
if d.filterHeader.simple {
d.simpleFilter()
} else {
d.normalFilter()
}
}
return d.img, nil
}