5
0
mirror of https://github.com/cwinfo/matterbridge.git synced 2024-11-10 08:40:29 +00:00
matterbridge/vendor/filippo.io/edwards25519/edwards25519.go
2022-03-20 14:57:48 +01:00

429 lines
10 KiB
Go

// Copyright (c) 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package edwards25519
import (
"errors"
"filippo.io/edwards25519/field"
)
// Point types.
type projP1xP1 struct {
X, Y, Z, T field.Element
}
type projP2 struct {
X, Y, Z field.Element
}
// Point represents a point on the edwards25519 curve.
//
// This type works similarly to math/big.Int, and all arguments and receivers
// are allowed to alias.
//
// The zero value is NOT valid, and it may be used only as a receiver.
type Point struct {
// The point is internally represented in extended coordinates (X, Y, Z, T)
// where x = X/Z, y = Y/Z, and xy = T/Z per https://eprint.iacr.org/2008/522.
x, y, z, t field.Element
// Make the type not comparable (i.e. used with == or as a map key), as
// equivalent points can be represented by different Go values.
_ incomparable
}
type incomparable [0]func()
func checkInitialized(points ...*Point) {
for _, p := range points {
if p.x == (field.Element{}) && p.y == (field.Element{}) {
panic("edwards25519: use of uninitialized Point")
}
}
}
type projCached struct {
YplusX, YminusX, Z, T2d field.Element
}
type affineCached struct {
YplusX, YminusX, T2d field.Element
}
// Constructors.
func (v *projP2) Zero() *projP2 {
v.X.Zero()
v.Y.One()
v.Z.One()
return v
}
// identity is the point at infinity.
var identity, _ = new(Point).SetBytes([]byte{
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})
// NewIdentityPoint returns a new Point set to the identity.
func NewIdentityPoint() *Point {
return new(Point).Set(identity)
}
// generator is the canonical curve basepoint. See TestGenerator for the
// correspondence of this encoding with the values in RFC 8032.
var generator, _ = new(Point).SetBytes([]byte{
0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66})
// NewGeneratorPoint returns a new Point set to the canonical generator.
func NewGeneratorPoint() *Point {
return new(Point).Set(generator)
}
func (v *projCached) Zero() *projCached {
v.YplusX.One()
v.YminusX.One()
v.Z.One()
v.T2d.Zero()
return v
}
func (v *affineCached) Zero() *affineCached {
v.YplusX.One()
v.YminusX.One()
v.T2d.Zero()
return v
}
// Assignments.
// Set sets v = u, and returns v.
func (v *Point) Set(u *Point) *Point {
*v = *u
return v
}
// Encoding.
// Bytes returns the canonical 32-byte encoding of v, according to RFC 8032,
// Section 5.1.2.
func (v *Point) Bytes() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var buf [32]byte
return v.bytes(&buf)
}
func (v *Point) bytes(buf *[32]byte) []byte {
checkInitialized(v)
var zInv, x, y field.Element
zInv.Invert(&v.z) // zInv = 1 / Z
x.Multiply(&v.x, &zInv) // x = X / Z
y.Multiply(&v.y, &zInv) // y = Y / Z
out := copyFieldElement(buf, &y)
out[31] |= byte(x.IsNegative() << 7)
return out
}
var feOne = new(field.Element).One()
// SetBytes sets v = x, where x is a 32-byte encoding of v. If x does not
// represent a valid point on the curve, SetBytes returns nil and an error and
// the receiver is unchanged. Otherwise, SetBytes returns v.
//
// Note that SetBytes accepts all non-canonical encodings of valid points.
// That is, it follows decoding rules that match most implementations in
// the ecosystem rather than RFC 8032.
func (v *Point) SetBytes(x []byte) (*Point, error) {
// Specifically, the non-canonical encodings that are accepted are
// 1) the ones where the field element is not reduced (see the
// (*field.Element).SetBytes docs) and
// 2) the ones where the x-coordinate is zero and the sign bit is set.
//
// This is consistent with crypto/ed25519/internal/edwards25519. Read more
// at https://hdevalence.ca/blog/2020-10-04-its-25519am, specifically the
// "Canonical A, R" section.
y, err := new(field.Element).SetBytes(x)
if err != nil {
return nil, errors.New("edwards25519: invalid point encoding length")
}
// -x² + y² = 1 + dx²y²
// x² + dx²y² = x²(dy² + 1) = y² - 1
// x² = (y² - 1) / (dy² + 1)
// u = y² - 1
y2 := new(field.Element).Square(y)
u := new(field.Element).Subtract(y2, feOne)
// v = dy² + 1
vv := new(field.Element).Multiply(y2, d)
vv = vv.Add(vv, feOne)
// x = +√(u/v)
xx, wasSquare := new(field.Element).SqrtRatio(u, vv)
if wasSquare == 0 {
return nil, errors.New("edwards25519: invalid point encoding")
}
// Select the negative square root if the sign bit is set.
xxNeg := new(field.Element).Negate(xx)
xx = xx.Select(xxNeg, xx, int(x[31]>>7))
v.x.Set(xx)
v.y.Set(y)
v.z.One()
v.t.Multiply(xx, y) // xy = T / Z
return v, nil
}
func copyFieldElement(buf *[32]byte, v *field.Element) []byte {
copy(buf[:], v.Bytes())
return buf[:]
}
// Conversions.
func (v *projP2) FromP1xP1(p *projP1xP1) *projP2 {
v.X.Multiply(&p.X, &p.T)
v.Y.Multiply(&p.Y, &p.Z)
v.Z.Multiply(&p.Z, &p.T)
return v
}
func (v *projP2) FromP3(p *Point) *projP2 {
v.X.Set(&p.x)
v.Y.Set(&p.y)
v.Z.Set(&p.z)
return v
}
func (v *Point) fromP1xP1(p *projP1xP1) *Point {
v.x.Multiply(&p.X, &p.T)
v.y.Multiply(&p.Y, &p.Z)
v.z.Multiply(&p.Z, &p.T)
v.t.Multiply(&p.X, &p.Y)
return v
}
func (v *Point) fromP2(p *projP2) *Point {
v.x.Multiply(&p.X, &p.Z)
v.y.Multiply(&p.Y, &p.Z)
v.z.Square(&p.Z)
v.t.Multiply(&p.X, &p.Y)
return v
}
// d is a constant in the curve equation.
var d, _ = new(field.Element).SetBytes([]byte{
0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52})
var d2 = new(field.Element).Add(d, d)
func (v *projCached) FromP3(p *Point) *projCached {
v.YplusX.Add(&p.y, &p.x)
v.YminusX.Subtract(&p.y, &p.x)
v.Z.Set(&p.z)
v.T2d.Multiply(&p.t, d2)
return v
}
func (v *affineCached) FromP3(p *Point) *affineCached {
v.YplusX.Add(&p.y, &p.x)
v.YminusX.Subtract(&p.y, &p.x)
v.T2d.Multiply(&p.t, d2)
var invZ field.Element
invZ.Invert(&p.z)
v.YplusX.Multiply(&v.YplusX, &invZ)
v.YminusX.Multiply(&v.YminusX, &invZ)
v.T2d.Multiply(&v.T2d, &invZ)
return v
}
// (Re)addition and subtraction.
// Add sets v = p + q, and returns v.
func (v *Point) Add(p, q *Point) *Point {
checkInitialized(p, q)
qCached := new(projCached).FromP3(q)
result := new(projP1xP1).Add(p, qCached)
return v.fromP1xP1(result)
}
// Subtract sets v = p - q, and returns v.
func (v *Point) Subtract(p, q *Point) *Point {
checkInitialized(p, q)
qCached := new(projCached).FromP3(q)
result := new(projP1xP1).Sub(p, qCached)
return v.fromP1xP1(result)
}
func (v *projP1xP1) Add(p *Point, q *projCached) *projP1xP1 {
var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element
YplusX.Add(&p.y, &p.x)
YminusX.Subtract(&p.y, &p.x)
PP.Multiply(&YplusX, &q.YplusX)
MM.Multiply(&YminusX, &q.YminusX)
TT2d.Multiply(&p.t, &q.T2d)
ZZ2.Multiply(&p.z, &q.Z)
ZZ2.Add(&ZZ2, &ZZ2)
v.X.Subtract(&PP, &MM)
v.Y.Add(&PP, &MM)
v.Z.Add(&ZZ2, &TT2d)
v.T.Subtract(&ZZ2, &TT2d)
return v
}
func (v *projP1xP1) Sub(p *Point, q *projCached) *projP1xP1 {
var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element
YplusX.Add(&p.y, &p.x)
YminusX.Subtract(&p.y, &p.x)
PP.Multiply(&YplusX, &q.YminusX) // flipped sign
MM.Multiply(&YminusX, &q.YplusX) // flipped sign
TT2d.Multiply(&p.t, &q.T2d)
ZZ2.Multiply(&p.z, &q.Z)
ZZ2.Add(&ZZ2, &ZZ2)
v.X.Subtract(&PP, &MM)
v.Y.Add(&PP, &MM)
v.Z.Subtract(&ZZ2, &TT2d) // flipped sign
v.T.Add(&ZZ2, &TT2d) // flipped sign
return v
}
func (v *projP1xP1) AddAffine(p *Point, q *affineCached) *projP1xP1 {
var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element
YplusX.Add(&p.y, &p.x)
YminusX.Subtract(&p.y, &p.x)
PP.Multiply(&YplusX, &q.YplusX)
MM.Multiply(&YminusX, &q.YminusX)
TT2d.Multiply(&p.t, &q.T2d)
Z2.Add(&p.z, &p.z)
v.X.Subtract(&PP, &MM)
v.Y.Add(&PP, &MM)
v.Z.Add(&Z2, &TT2d)
v.T.Subtract(&Z2, &TT2d)
return v
}
func (v *projP1xP1) SubAffine(p *Point, q *affineCached) *projP1xP1 {
var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element
YplusX.Add(&p.y, &p.x)
YminusX.Subtract(&p.y, &p.x)
PP.Multiply(&YplusX, &q.YminusX) // flipped sign
MM.Multiply(&YminusX, &q.YplusX) // flipped sign
TT2d.Multiply(&p.t, &q.T2d)
Z2.Add(&p.z, &p.z)
v.X.Subtract(&PP, &MM)
v.Y.Add(&PP, &MM)
v.Z.Subtract(&Z2, &TT2d) // flipped sign
v.T.Add(&Z2, &TT2d) // flipped sign
return v
}
// Doubling.
func (v *projP1xP1) Double(p *projP2) *projP1xP1 {
var XX, YY, ZZ2, XplusYsq field.Element
XX.Square(&p.X)
YY.Square(&p.Y)
ZZ2.Square(&p.Z)
ZZ2.Add(&ZZ2, &ZZ2)
XplusYsq.Add(&p.X, &p.Y)
XplusYsq.Square(&XplusYsq)
v.Y.Add(&YY, &XX)
v.Z.Subtract(&YY, &XX)
v.X.Subtract(&XplusYsq, &v.Y)
v.T.Subtract(&ZZ2, &v.Z)
return v
}
// Negation.
// Negate sets v = -p, and returns v.
func (v *Point) Negate(p *Point) *Point {
checkInitialized(p)
v.x.Negate(&p.x)
v.y.Set(&p.y)
v.z.Set(&p.z)
v.t.Negate(&p.t)
return v
}
// Equal returns 1 if v is equivalent to u, and 0 otherwise.
func (v *Point) Equal(u *Point) int {
checkInitialized(v, u)
var t1, t2, t3, t4 field.Element
t1.Multiply(&v.x, &u.z)
t2.Multiply(&u.x, &v.z)
t3.Multiply(&v.y, &u.z)
t4.Multiply(&u.y, &v.z)
return t1.Equal(&t2) & t3.Equal(&t4)
}
// Constant-time operations
// Select sets v to a if cond == 1 and to b if cond == 0.
func (v *projCached) Select(a, b *projCached, cond int) *projCached {
v.YplusX.Select(&a.YplusX, &b.YplusX, cond)
v.YminusX.Select(&a.YminusX, &b.YminusX, cond)
v.Z.Select(&a.Z, &b.Z, cond)
v.T2d.Select(&a.T2d, &b.T2d, cond)
return v
}
// Select sets v to a if cond == 1 and to b if cond == 0.
func (v *affineCached) Select(a, b *affineCached, cond int) *affineCached {
v.YplusX.Select(&a.YplusX, &b.YplusX, cond)
v.YminusX.Select(&a.YminusX, &b.YminusX, cond)
v.T2d.Select(&a.T2d, &b.T2d, cond)
return v
}
// CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0.
func (v *projCached) CondNeg(cond int) *projCached {
v.YplusX.Swap(&v.YminusX, cond)
v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond)
return v
}
// CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0.
func (v *affineCached) CondNeg(cond int) *affineCached {
v.YplusX.Swap(&v.YminusX, cond)
v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond)
return v
}