mirror of
https://github.com/cwinfo/matterbridge.git
synced 2024-11-14 05:00:27 +00:00
1213 lines
28 KiB
Go
1213 lines
28 KiB
Go
package objects
|
|
|
|
import (
|
|
"strconv"
|
|
"sync"
|
|
"unicode/utf8"
|
|
|
|
"github.com/d5/tengo"
|
|
)
|
|
|
|
// Strings for use with buffer.WriteString.
|
|
// This is less overhead than using buffer.Write with byte arrays.
|
|
const (
|
|
commaSpaceString = ", "
|
|
nilParenString = "(nil)"
|
|
percentBangString = "%!"
|
|
missingString = "(MISSING)"
|
|
badIndexString = "(BADINDEX)"
|
|
extraString = "%!(EXTRA "
|
|
badWidthString = "%!(BADWIDTH)"
|
|
badPrecString = "%!(BADPREC)"
|
|
noVerbString = "%!(NOVERB)"
|
|
)
|
|
|
|
const (
|
|
ldigits = "0123456789abcdefx"
|
|
udigits = "0123456789ABCDEFX"
|
|
)
|
|
|
|
const (
|
|
signed = true
|
|
unsigned = false
|
|
)
|
|
|
|
// flags placed in a separate struct for easy clearing.
|
|
type fmtFlags struct {
|
|
widPresent bool
|
|
precPresent bool
|
|
minus bool
|
|
plus bool
|
|
sharp bool
|
|
space bool
|
|
zero bool
|
|
|
|
// For the formats %+v %#v, we set the plusV/sharpV flags
|
|
// and clear the plus/sharp flags since %+v and %#v are in effect
|
|
// different, flagless formats set at the top level.
|
|
plusV bool
|
|
sharpV bool
|
|
|
|
// error-related flags.
|
|
inDetail bool
|
|
needNewline bool
|
|
needColon bool
|
|
}
|
|
|
|
// A formatter is the raw formatter used by Printf etc.
|
|
// It prints into a buffer that must be set up separately.
|
|
type formatter struct {
|
|
buf *buffer
|
|
|
|
fmtFlags
|
|
|
|
wid int // width
|
|
prec int // precision
|
|
|
|
// intbuf is large enough to store %b of an int64 with a sign and
|
|
// avoids padding at the end of the struct on 32 bit architectures.
|
|
intbuf [68]byte
|
|
}
|
|
|
|
func (f *formatter) clearflags() {
|
|
f.fmtFlags = fmtFlags{}
|
|
}
|
|
|
|
func (f *formatter) init(buf *buffer) {
|
|
f.buf = buf
|
|
f.clearflags()
|
|
}
|
|
|
|
// writePadding generates n bytes of padding.
|
|
func (f *formatter) writePadding(n int) {
|
|
if n <= 0 { // No padding bytes needed.
|
|
return
|
|
}
|
|
buf := *f.buf
|
|
oldLen := len(buf)
|
|
newLen := oldLen + n
|
|
|
|
if newLen > tengo.MaxStringLen {
|
|
panic(ErrStringLimit)
|
|
}
|
|
|
|
// Make enough room for padding.
|
|
if newLen > cap(buf) {
|
|
buf = make(buffer, cap(buf)*2+n)
|
|
copy(buf, *f.buf)
|
|
}
|
|
// Decide which byte the padding should be filled with.
|
|
padByte := byte(' ')
|
|
if f.zero {
|
|
padByte = byte('0')
|
|
}
|
|
// Fill padding with padByte.
|
|
padding := buf[oldLen:newLen]
|
|
for i := range padding {
|
|
padding[i] = padByte
|
|
}
|
|
*f.buf = buf[:newLen]
|
|
}
|
|
|
|
// pad appends b to f.buf, padded on left (!f.minus) or right (f.minus).
|
|
func (f *formatter) pad(b []byte) {
|
|
if !f.widPresent || f.wid == 0 {
|
|
f.buf.Write(b)
|
|
return
|
|
}
|
|
width := f.wid - utf8.RuneCount(b)
|
|
if !f.minus {
|
|
// left padding
|
|
f.writePadding(width)
|
|
f.buf.Write(b)
|
|
} else {
|
|
// right padding
|
|
f.buf.Write(b)
|
|
f.writePadding(width)
|
|
}
|
|
}
|
|
|
|
// padString appends s to f.buf, padded on left (!f.minus) or right (f.minus).
|
|
func (f *formatter) padString(s string) {
|
|
if !f.widPresent || f.wid == 0 {
|
|
f.buf.WriteString(s)
|
|
return
|
|
}
|
|
width := f.wid - utf8.RuneCountInString(s)
|
|
if !f.minus {
|
|
// left padding
|
|
f.writePadding(width)
|
|
f.buf.WriteString(s)
|
|
} else {
|
|
// right padding
|
|
f.buf.WriteString(s)
|
|
f.writePadding(width)
|
|
}
|
|
}
|
|
|
|
// fmtBoolean formats a boolean.
|
|
func (f *formatter) fmtBoolean(v bool) {
|
|
if v {
|
|
f.padString("true")
|
|
} else {
|
|
f.padString("false")
|
|
}
|
|
}
|
|
|
|
// fmtUnicode formats a uint64 as "U+0078" or with f.sharp set as "U+0078 'x'".
|
|
func (f *formatter) fmtUnicode(u uint64) {
|
|
buf := f.intbuf[0:]
|
|
|
|
// With default precision set the maximum needed buf length is 18
|
|
// for formatting -1 with %#U ("U+FFFFFFFFFFFFFFFF") which fits
|
|
// into the already allocated intbuf with a capacity of 68 bytes.
|
|
prec := 4
|
|
if f.precPresent && f.prec > 4 {
|
|
prec = f.prec
|
|
// Compute space needed for "U+" , number, " '", character, "'".
|
|
width := 2 + prec + 2 + utf8.UTFMax + 1
|
|
if width > len(buf) {
|
|
buf = make([]byte, width)
|
|
}
|
|
}
|
|
|
|
// Format into buf, ending at buf[i]. Formatting numbers is easier right-to-left.
|
|
i := len(buf)
|
|
|
|
// For %#U we want to add a space and a quoted character at the end of the buffer.
|
|
if f.sharp && u <= utf8.MaxRune && strconv.IsPrint(rune(u)) {
|
|
i--
|
|
buf[i] = '\''
|
|
i -= utf8.RuneLen(rune(u))
|
|
utf8.EncodeRune(buf[i:], rune(u))
|
|
i--
|
|
buf[i] = '\''
|
|
i--
|
|
buf[i] = ' '
|
|
}
|
|
// Format the Unicode code point u as a hexadecimal number.
|
|
for u >= 16 {
|
|
i--
|
|
buf[i] = udigits[u&0xF]
|
|
prec--
|
|
u >>= 4
|
|
}
|
|
i--
|
|
buf[i] = udigits[u]
|
|
prec--
|
|
// Add zeros in front of the number until requested precision is reached.
|
|
for prec > 0 {
|
|
i--
|
|
buf[i] = '0'
|
|
prec--
|
|
}
|
|
// Add a leading "U+".
|
|
i--
|
|
buf[i] = '+'
|
|
i--
|
|
buf[i] = 'U'
|
|
|
|
oldZero := f.zero
|
|
f.zero = false
|
|
f.pad(buf[i:])
|
|
f.zero = oldZero
|
|
}
|
|
|
|
// fmtInteger formats signed and unsigned integers.
|
|
func (f *formatter) fmtInteger(u uint64, base int, isSigned bool, verb rune, digits string) {
|
|
negative := isSigned && int64(u) < 0
|
|
if negative {
|
|
u = -u
|
|
}
|
|
|
|
buf := f.intbuf[0:]
|
|
// The already allocated f.intbuf with a capacity of 68 bytes
|
|
// is large enough for integer formatting when no precision or width is set.
|
|
if f.widPresent || f.precPresent {
|
|
// Account 3 extra bytes for possible addition of a sign and "0x".
|
|
width := 3 + f.wid + f.prec // wid and prec are always positive.
|
|
if width > len(buf) {
|
|
// We're going to need a bigger boat.
|
|
buf = make([]byte, width)
|
|
}
|
|
}
|
|
|
|
// Two ways to ask for extra leading zero digits: %.3d or %03d.
|
|
// If both are specified the f.zero flag is ignored and
|
|
// padding with spaces is used instead.
|
|
prec := 0
|
|
if f.precPresent {
|
|
prec = f.prec
|
|
// Precision of 0 and value of 0 means "print nothing" but padding.
|
|
if prec == 0 && u == 0 {
|
|
oldZero := f.zero
|
|
f.zero = false
|
|
f.writePadding(f.wid)
|
|
f.zero = oldZero
|
|
return
|
|
}
|
|
} else if f.zero && f.widPresent {
|
|
prec = f.wid
|
|
if negative || f.plus || f.space {
|
|
prec-- // leave room for sign
|
|
}
|
|
}
|
|
|
|
// Because printing is easier right-to-left: format u into buf, ending at buf[i].
|
|
// We could make things marginally faster by splitting the 32-bit case out
|
|
// into a separate block but it's not worth the duplication, so u has 64 bits.
|
|
i := len(buf)
|
|
// Use constants for the division and modulo for more efficient code.
|
|
// Switch cases ordered by popularity.
|
|
switch base {
|
|
case 10:
|
|
for u >= 10 {
|
|
i--
|
|
next := u / 10
|
|
buf[i] = byte('0' + u - next*10)
|
|
u = next
|
|
}
|
|
case 16:
|
|
for u >= 16 {
|
|
i--
|
|
buf[i] = digits[u&0xF]
|
|
u >>= 4
|
|
}
|
|
case 8:
|
|
for u >= 8 {
|
|
i--
|
|
buf[i] = byte('0' + u&7)
|
|
u >>= 3
|
|
}
|
|
case 2:
|
|
for u >= 2 {
|
|
i--
|
|
buf[i] = byte('0' + u&1)
|
|
u >>= 1
|
|
}
|
|
default:
|
|
panic("fmt: unknown base; can't happen")
|
|
}
|
|
i--
|
|
buf[i] = digits[u]
|
|
for i > 0 && prec > len(buf)-i {
|
|
i--
|
|
buf[i] = '0'
|
|
}
|
|
|
|
// Various prefixes: 0x, -, etc.
|
|
if f.sharp {
|
|
switch base {
|
|
case 2:
|
|
// Add a leading 0b.
|
|
i--
|
|
buf[i] = 'b'
|
|
i--
|
|
buf[i] = '0'
|
|
case 8:
|
|
if buf[i] != '0' {
|
|
i--
|
|
buf[i] = '0'
|
|
}
|
|
case 16:
|
|
// Add a leading 0x or 0X.
|
|
i--
|
|
buf[i] = digits[16]
|
|
i--
|
|
buf[i] = '0'
|
|
}
|
|
}
|
|
if verb == 'O' {
|
|
i--
|
|
buf[i] = 'o'
|
|
i--
|
|
buf[i] = '0'
|
|
}
|
|
|
|
if negative {
|
|
i--
|
|
buf[i] = '-'
|
|
} else if f.plus {
|
|
i--
|
|
buf[i] = '+'
|
|
} else if f.space {
|
|
i--
|
|
buf[i] = ' '
|
|
}
|
|
|
|
// Left padding with zeros has already been handled like precision earlier
|
|
// or the f.zero flag is ignored due to an explicitly set precision.
|
|
oldZero := f.zero
|
|
f.zero = false
|
|
f.pad(buf[i:])
|
|
f.zero = oldZero
|
|
}
|
|
|
|
// truncate truncates the string s to the specified precision, if present.
|
|
func (f *formatter) truncateString(s string) string {
|
|
if f.precPresent {
|
|
n := f.prec
|
|
for i := range s {
|
|
n--
|
|
if n < 0 {
|
|
return s[:i]
|
|
}
|
|
}
|
|
}
|
|
return s
|
|
}
|
|
|
|
// truncate truncates the byte slice b as a string of the specified precision, if present.
|
|
func (f *formatter) truncate(b []byte) []byte {
|
|
if f.precPresent {
|
|
n := f.prec
|
|
for i := 0; i < len(b); {
|
|
n--
|
|
if n < 0 {
|
|
return b[:i]
|
|
}
|
|
wid := 1
|
|
if b[i] >= utf8.RuneSelf {
|
|
_, wid = utf8.DecodeRune(b[i:])
|
|
}
|
|
i += wid
|
|
}
|
|
}
|
|
return b
|
|
}
|
|
|
|
// fmtS formats a string.
|
|
func (f *formatter) fmtS(s string) {
|
|
s = f.truncateString(s)
|
|
f.padString(s)
|
|
}
|
|
|
|
// fmtBs formats the byte slice b as if it was formatted as string with fmtS.
|
|
func (f *formatter) fmtBs(b []byte) {
|
|
b = f.truncate(b)
|
|
f.pad(b)
|
|
}
|
|
|
|
// fmtSbx formats a string or byte slice as a hexadecimal encoding of its bytes.
|
|
func (f *formatter) fmtSbx(s string, b []byte, digits string) {
|
|
length := len(b)
|
|
if b == nil {
|
|
// No byte slice present. Assume string s should be encoded.
|
|
length = len(s)
|
|
}
|
|
// Set length to not process more bytes than the precision demands.
|
|
if f.precPresent && f.prec < length {
|
|
length = f.prec
|
|
}
|
|
// Compute width of the encoding taking into account the f.sharp and f.space flag.
|
|
width := 2 * length
|
|
if width > 0 {
|
|
if f.space {
|
|
// Each element encoded by two hexadecimals will get a leading 0x or 0X.
|
|
if f.sharp {
|
|
width *= 2
|
|
}
|
|
// Elements will be separated by a space.
|
|
width += length - 1
|
|
} else if f.sharp {
|
|
// Only a leading 0x or 0X will be added for the whole string.
|
|
width += 2
|
|
}
|
|
} else { // The byte slice or string that should be encoded is empty.
|
|
if f.widPresent {
|
|
f.writePadding(f.wid)
|
|
}
|
|
return
|
|
}
|
|
// Handle padding to the left.
|
|
if f.widPresent && f.wid > width && !f.minus {
|
|
f.writePadding(f.wid - width)
|
|
}
|
|
// Write the encoding directly into the output buffer.
|
|
buf := *f.buf
|
|
if f.sharp {
|
|
// Add leading 0x or 0X.
|
|
buf = append(buf, '0', digits[16])
|
|
}
|
|
var c byte
|
|
for i := 0; i < length; i++ {
|
|
if f.space && i > 0 {
|
|
// Separate elements with a space.
|
|
buf = append(buf, ' ')
|
|
if f.sharp {
|
|
// Add leading 0x or 0X for each element.
|
|
buf = append(buf, '0', digits[16])
|
|
}
|
|
}
|
|
if b != nil {
|
|
c = b[i] // Take a byte from the input byte slice.
|
|
} else {
|
|
c = s[i] // Take a byte from the input string.
|
|
}
|
|
// Encode each byte as two hexadecimal digits.
|
|
buf = append(buf, digits[c>>4], digits[c&0xF])
|
|
}
|
|
*f.buf = buf
|
|
// Handle padding to the right.
|
|
if f.widPresent && f.wid > width && f.minus {
|
|
f.writePadding(f.wid - width)
|
|
}
|
|
}
|
|
|
|
// fmtSx formats a string as a hexadecimal encoding of its bytes.
|
|
func (f *formatter) fmtSx(s, digits string) {
|
|
f.fmtSbx(s, nil, digits)
|
|
}
|
|
|
|
// fmtBx formats a byte slice as a hexadecimal encoding of its bytes.
|
|
func (f *formatter) fmtBx(b []byte, digits string) {
|
|
f.fmtSbx("", b, digits)
|
|
}
|
|
|
|
// fmtQ formats a string as a double-quoted, escaped Go string constant.
|
|
// If f.sharp is set a raw (backquoted) string may be returned instead
|
|
// if the string does not contain any control characters other than tab.
|
|
func (f *formatter) fmtQ(s string) {
|
|
s = f.truncateString(s)
|
|
if f.sharp && strconv.CanBackquote(s) {
|
|
f.padString("`" + s + "`")
|
|
return
|
|
}
|
|
buf := f.intbuf[:0]
|
|
if f.plus {
|
|
f.pad(strconv.AppendQuoteToASCII(buf, s))
|
|
} else {
|
|
f.pad(strconv.AppendQuote(buf, s))
|
|
}
|
|
}
|
|
|
|
// fmtC formats an integer as a Unicode character.
|
|
// If the character is not valid Unicode, it will print '\ufffd'.
|
|
func (f *formatter) fmtC(c uint64) {
|
|
r := rune(c)
|
|
if c > utf8.MaxRune {
|
|
r = utf8.RuneError
|
|
}
|
|
buf := f.intbuf[:0]
|
|
w := utf8.EncodeRune(buf[:utf8.UTFMax], r)
|
|
f.pad(buf[:w])
|
|
}
|
|
|
|
// fmtQc formats an integer as a single-quoted, escaped Go character constant.
|
|
// If the character is not valid Unicode, it will print '\ufffd'.
|
|
func (f *formatter) fmtQc(c uint64) {
|
|
r := rune(c)
|
|
if c > utf8.MaxRune {
|
|
r = utf8.RuneError
|
|
}
|
|
buf := f.intbuf[:0]
|
|
if f.plus {
|
|
f.pad(strconv.AppendQuoteRuneToASCII(buf, r))
|
|
} else {
|
|
f.pad(strconv.AppendQuoteRune(buf, r))
|
|
}
|
|
}
|
|
|
|
// fmtFloat formats a float64. It assumes that verb is a valid format specifier
|
|
// for strconv.AppendFloat and therefore fits into a byte.
|
|
func (f *formatter) fmtFloat(v float64, size int, verb rune, prec int) {
|
|
// Explicit precision in format specifier overrules default precision.
|
|
if f.precPresent {
|
|
prec = f.prec
|
|
}
|
|
// Format number, reserving space for leading + sign if needed.
|
|
num := strconv.AppendFloat(f.intbuf[:1], v, byte(verb), prec, size)
|
|
if num[1] == '-' || num[1] == '+' {
|
|
num = num[1:]
|
|
} else {
|
|
num[0] = '+'
|
|
}
|
|
// f.space means to add a leading space instead of a "+" sign unless
|
|
// the sign is explicitly asked for by f.plus.
|
|
if f.space && num[0] == '+' && !f.plus {
|
|
num[0] = ' '
|
|
}
|
|
// Special handling for infinities and NaN,
|
|
// which don't look like a number so shouldn't be padded with zeros.
|
|
if num[1] == 'I' || num[1] == 'N' {
|
|
oldZero := f.zero
|
|
f.zero = false
|
|
// Remove sign before NaN if not asked for.
|
|
if num[1] == 'N' && !f.space && !f.plus {
|
|
num = num[1:]
|
|
}
|
|
f.pad(num)
|
|
f.zero = oldZero
|
|
return
|
|
}
|
|
// The sharp flag forces printing a decimal point for non-binary formats
|
|
// and retains trailing zeros, which we may need to restore.
|
|
if f.sharp && verb != 'b' {
|
|
digits := 0
|
|
switch verb {
|
|
case 'v', 'g', 'G', 'x':
|
|
digits = prec
|
|
// If no precision is set explicitly use a precision of 6.
|
|
if digits == -1 {
|
|
digits = 6
|
|
}
|
|
}
|
|
|
|
// Buffer pre-allocated with enough room for
|
|
// exponent notations of the form "e+123" or "p-1023".
|
|
var tailBuf [6]byte
|
|
tail := tailBuf[:0]
|
|
|
|
hasDecimalPoint := false
|
|
// Starting from i = 1 to skip sign at num[0].
|
|
for i := 1; i < len(num); i++ {
|
|
switch num[i] {
|
|
case '.':
|
|
hasDecimalPoint = true
|
|
case 'p', 'P':
|
|
tail = append(tail, num[i:]...)
|
|
num = num[:i]
|
|
case 'e', 'E':
|
|
if verb != 'x' && verb != 'X' {
|
|
tail = append(tail, num[i:]...)
|
|
num = num[:i]
|
|
break
|
|
}
|
|
fallthrough
|
|
default:
|
|
digits--
|
|
}
|
|
}
|
|
if !hasDecimalPoint {
|
|
num = append(num, '.')
|
|
}
|
|
for digits > 0 {
|
|
num = append(num, '0')
|
|
digits--
|
|
}
|
|
num = append(num, tail...)
|
|
}
|
|
// We want a sign if asked for and if the sign is not positive.
|
|
if f.plus || num[0] != '+' {
|
|
// If we're zero padding to the left we want the sign before the leading zeros.
|
|
// Achieve this by writing the sign out and then padding the unsigned number.
|
|
if f.zero && f.widPresent && f.wid > len(num) {
|
|
f.buf.WriteSingleByte(num[0])
|
|
f.writePadding(f.wid - len(num))
|
|
f.buf.Write(num[1:])
|
|
return
|
|
}
|
|
f.pad(num)
|
|
return
|
|
}
|
|
// No sign to show and the number is positive; just print the unsigned number.
|
|
f.pad(num[1:])
|
|
}
|
|
|
|
// Use simple []byte instead of bytes.Buffer to avoid large dependency.
|
|
type buffer []byte
|
|
|
|
func (b *buffer) Write(p []byte) {
|
|
if len(*b)+len(p) > tengo.MaxStringLen {
|
|
panic(ErrStringLimit)
|
|
}
|
|
|
|
*b = append(*b, p...)
|
|
}
|
|
|
|
func (b *buffer) WriteString(s string) {
|
|
if len(*b)+len(s) > tengo.MaxStringLen {
|
|
panic(ErrStringLimit)
|
|
}
|
|
|
|
*b = append(*b, s...)
|
|
}
|
|
|
|
func (b *buffer) WriteSingleByte(c byte) {
|
|
if len(*b) >= tengo.MaxStringLen {
|
|
panic(ErrStringLimit)
|
|
}
|
|
|
|
*b = append(*b, c)
|
|
}
|
|
|
|
func (b *buffer) WriteRune(r rune) {
|
|
if len(*b)+utf8.RuneLen(r) > tengo.MaxStringLen {
|
|
panic(ErrStringLimit)
|
|
}
|
|
|
|
if r < utf8.RuneSelf {
|
|
*b = append(*b, byte(r))
|
|
return
|
|
}
|
|
|
|
b2 := *b
|
|
n := len(b2)
|
|
for n+utf8.UTFMax > cap(b2) {
|
|
b2 = append(b2, 0)
|
|
}
|
|
w := utf8.EncodeRune(b2[n:n+utf8.UTFMax], r)
|
|
*b = b2[:n+w]
|
|
}
|
|
|
|
// pp is used to store a printer's state and is reused with sync.Pool to avoid allocations.
|
|
type pp struct {
|
|
buf buffer
|
|
|
|
// arg holds the current item.
|
|
arg Object
|
|
|
|
// fmt is used to format basic items such as integers or strings.
|
|
fmt formatter
|
|
|
|
// reordered records whether the format string used argument reordering.
|
|
reordered bool
|
|
|
|
// goodArgNum records whether the most recent reordering directive was valid.
|
|
goodArgNum bool
|
|
|
|
// erroring is set when printing an error string to guard against calling handleMethods.
|
|
erroring bool
|
|
}
|
|
|
|
var ppFree = sync.Pool{
|
|
New: func() interface{} { return new(pp) },
|
|
}
|
|
|
|
// newPrinter allocates a new pp struct or grabs a cached one.
|
|
func newPrinter() *pp {
|
|
p := ppFree.Get().(*pp)
|
|
p.erroring = false
|
|
p.fmt.init(&p.buf)
|
|
return p
|
|
}
|
|
|
|
// free saves used pp structs in ppFree; avoids an allocation per invocation.
|
|
func (p *pp) free() {
|
|
// Proper usage of a sync.Pool requires each entry to have approximately
|
|
// the same memory cost. To obtain this property when the stored type
|
|
// contains a variably-sized buffer, we add a hard limit on the maximum buffer
|
|
// to place back in the pool.
|
|
//
|
|
// See https://golang.org/issue/23199
|
|
if cap(p.buf) > 64<<10 {
|
|
return
|
|
}
|
|
|
|
p.buf = p.buf[:0]
|
|
p.arg = nil
|
|
ppFree.Put(p)
|
|
}
|
|
|
|
func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }
|
|
|
|
func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }
|
|
|
|
func (p *pp) Flag(b int) bool {
|
|
switch b {
|
|
case '-':
|
|
return p.fmt.minus
|
|
case '+':
|
|
return p.fmt.plus || p.fmt.plusV
|
|
case '#':
|
|
return p.fmt.sharp || p.fmt.sharpV
|
|
case ' ':
|
|
return p.fmt.space
|
|
case '0':
|
|
return p.fmt.zero
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Implement Write so we can call Fprintf on a pp (through State), for
|
|
// recursive use in custom verbs.
|
|
func (p *pp) Write(b []byte) (ret int, err error) {
|
|
p.buf.Write(b)
|
|
return len(b), nil
|
|
}
|
|
|
|
// Implement WriteString so that we can call io.WriteString
|
|
// on a pp (through state), for efficiency.
|
|
func (p *pp) WriteString(s string) (ret int, err error) {
|
|
p.buf.WriteString(s)
|
|
return len(s), nil
|
|
}
|
|
|
|
func (p *pp) WriteRune(r rune) (ret int, err error) {
|
|
p.buf.WriteRune(r)
|
|
return utf8.RuneLen(r), nil
|
|
}
|
|
|
|
func (p *pp) WriteSingleByte(c byte) (ret int, err error) {
|
|
p.buf.WriteSingleByte(c)
|
|
return 1, nil
|
|
}
|
|
|
|
// tooLarge reports whether the magnitude of the integer is
|
|
// too large to be used as a formatting width or precision.
|
|
func tooLarge(x int) bool {
|
|
const max int = 1e6
|
|
return x > max || x < -max
|
|
}
|
|
|
|
// parsenum converts ASCII to integer. num is 0 (and isnum is false) if no number present.
|
|
func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
|
|
if start >= end {
|
|
return 0, false, end
|
|
}
|
|
for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
|
|
if tooLarge(num) {
|
|
return 0, false, end // Overflow; crazy long number most likely.
|
|
}
|
|
num = num*10 + int(s[newi]-'0')
|
|
isnum = true
|
|
}
|
|
return
|
|
}
|
|
|
|
func (p *pp) badVerb(verb rune) {
|
|
p.erroring = true
|
|
_, _ = p.WriteString(percentBangString)
|
|
_, _ = p.WriteRune(verb)
|
|
_, _ = p.WriteSingleByte('(')
|
|
switch {
|
|
case p.arg != nil:
|
|
_, _ = p.WriteString(p.arg.String())
|
|
_, _ = p.WriteSingleByte('=')
|
|
p.printArg(p.arg, 'v')
|
|
default:
|
|
_, _ = p.WriteString(UndefinedValue.String())
|
|
}
|
|
_, _ = p.WriteSingleByte(')')
|
|
p.erroring = false
|
|
}
|
|
|
|
func (p *pp) fmtBool(v bool, verb rune) {
|
|
switch verb {
|
|
case 't', 'v':
|
|
p.fmt.fmtBoolean(v)
|
|
default:
|
|
p.badVerb(verb)
|
|
}
|
|
}
|
|
|
|
// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
|
|
// not, as requested, by temporarily setting the sharp flag.
|
|
func (p *pp) fmt0x64(v uint64, leading0x bool) {
|
|
sharp := p.fmt.sharp
|
|
p.fmt.sharp = leading0x
|
|
p.fmt.fmtInteger(v, 16, unsigned, 'v', ldigits)
|
|
p.fmt.sharp = sharp
|
|
}
|
|
|
|
// fmtInteger formats a signed or unsigned integer.
|
|
func (p *pp) fmtInteger(v uint64, isSigned bool, verb rune) {
|
|
switch verb {
|
|
case 'v':
|
|
if p.fmt.sharpV && !isSigned {
|
|
p.fmt0x64(v, true)
|
|
} else {
|
|
p.fmt.fmtInteger(v, 10, isSigned, verb, ldigits)
|
|
}
|
|
case 'd':
|
|
p.fmt.fmtInteger(v, 10, isSigned, verb, ldigits)
|
|
case 'b':
|
|
p.fmt.fmtInteger(v, 2, isSigned, verb, ldigits)
|
|
case 'o', 'O':
|
|
p.fmt.fmtInteger(v, 8, isSigned, verb, ldigits)
|
|
case 'x':
|
|
p.fmt.fmtInteger(v, 16, isSigned, verb, ldigits)
|
|
case 'X':
|
|
p.fmt.fmtInteger(v, 16, isSigned, verb, udigits)
|
|
case 'c':
|
|
p.fmt.fmtC(v)
|
|
case 'q':
|
|
if v <= utf8.MaxRune {
|
|
p.fmt.fmtQc(v)
|
|
} else {
|
|
p.badVerb(verb)
|
|
}
|
|
case 'U':
|
|
p.fmt.fmtUnicode(v)
|
|
default:
|
|
p.badVerb(verb)
|
|
}
|
|
}
|
|
|
|
// fmtFloat formats a float. The default precision for each verb
|
|
// is specified as last argument in the call to fmt_float.
|
|
func (p *pp) fmtFloat(v float64, size int, verb rune) {
|
|
switch verb {
|
|
case 'v':
|
|
p.fmt.fmtFloat(v, size, 'g', -1)
|
|
case 'b', 'g', 'G', 'x', 'X':
|
|
p.fmt.fmtFloat(v, size, verb, -1)
|
|
case 'f', 'e', 'E':
|
|
p.fmt.fmtFloat(v, size, verb, 6)
|
|
case 'F':
|
|
p.fmt.fmtFloat(v, size, 'f', 6)
|
|
default:
|
|
p.badVerb(verb)
|
|
}
|
|
}
|
|
|
|
func (p *pp) fmtString(v string, verb rune) {
|
|
switch verb {
|
|
case 'v':
|
|
if p.fmt.sharpV {
|
|
p.fmt.fmtQ(v)
|
|
} else {
|
|
p.fmt.fmtS(v)
|
|
}
|
|
case 's':
|
|
p.fmt.fmtS(v)
|
|
case 'x':
|
|
p.fmt.fmtSx(v, ldigits)
|
|
case 'X':
|
|
p.fmt.fmtSx(v, udigits)
|
|
case 'q':
|
|
p.fmt.fmtQ(v)
|
|
default:
|
|
p.badVerb(verb)
|
|
}
|
|
}
|
|
|
|
func (p *pp) fmtBytes(v []byte, verb rune, typeString string) {
|
|
switch verb {
|
|
case 'v', 'd':
|
|
if p.fmt.sharpV {
|
|
_, _ = p.WriteString(typeString)
|
|
if v == nil {
|
|
_, _ = p.WriteString(nilParenString)
|
|
return
|
|
}
|
|
_, _ = p.WriteSingleByte('{')
|
|
for i, c := range v {
|
|
if i > 0 {
|
|
_, _ = p.WriteString(commaSpaceString)
|
|
}
|
|
p.fmt0x64(uint64(c), true)
|
|
}
|
|
_, _ = p.WriteSingleByte('}')
|
|
} else {
|
|
_, _ = p.WriteSingleByte('[')
|
|
for i, c := range v {
|
|
if i > 0 {
|
|
_, _ = p.WriteSingleByte(' ')
|
|
}
|
|
p.fmt.fmtInteger(uint64(c), 10, unsigned, verb, ldigits)
|
|
}
|
|
_, _ = p.WriteSingleByte(']')
|
|
}
|
|
case 's':
|
|
p.fmt.fmtBs(v)
|
|
case 'x':
|
|
p.fmt.fmtBx(v, ldigits)
|
|
case 'X':
|
|
p.fmt.fmtBx(v, udigits)
|
|
case 'q':
|
|
p.fmt.fmtQ(string(v))
|
|
}
|
|
}
|
|
|
|
func (p *pp) printArg(arg Object, verb rune) {
|
|
p.arg = arg
|
|
|
|
if arg == nil {
|
|
arg = UndefinedValue
|
|
}
|
|
|
|
// Special processing considerations.
|
|
// %T (the value's type) and %p (its address) are special; we always do them first.
|
|
switch verb {
|
|
case 'T':
|
|
p.fmt.fmtS(arg.TypeName())
|
|
return
|
|
case 'v':
|
|
p.fmt.fmtS(arg.String())
|
|
return
|
|
}
|
|
|
|
// Some types can be done without reflection.
|
|
switch f := arg.(type) {
|
|
case *Bool:
|
|
p.fmtBool(!f.IsFalsy(), verb)
|
|
case *Float:
|
|
p.fmtFloat(f.Value, 64, verb)
|
|
case *Int:
|
|
p.fmtInteger(uint64(f.Value), signed, verb)
|
|
case *String:
|
|
p.fmtString(f.Value, verb)
|
|
case *Bytes:
|
|
p.fmtBytes(f.Value, verb, "[]byte")
|
|
default:
|
|
p.fmtString(f.String(), verb)
|
|
}
|
|
}
|
|
|
|
// intFromArg gets the argNumth element of a. On return, isInt reports whether the argument has integer type.
|
|
func intFromArg(a []Object, argNum int) (num int, isInt bool, newArgNum int) {
|
|
newArgNum = argNum
|
|
if argNum < len(a) {
|
|
var num64 int64
|
|
num64, isInt = ToInt64(a[argNum])
|
|
num = int(num64)
|
|
newArgNum = argNum + 1
|
|
if tooLarge(num) {
|
|
num = 0
|
|
isInt = false
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// parseArgNumber returns the value of the bracketed number, minus 1
|
|
// (explicit argument numbers are one-indexed but we want zero-indexed).
|
|
// The opening bracket is known to be present at format[0].
|
|
// The returned values are the index, the number of bytes to consume
|
|
// up to the closing paren, if present, and whether the number parsed
|
|
// ok. The bytes to consume will be 1 if no closing paren is present.
|
|
func parseArgNumber(format string) (index int, wid int, ok bool) {
|
|
// There must be at least 3 bytes: [n].
|
|
if len(format) < 3 {
|
|
return 0, 1, false
|
|
}
|
|
|
|
// Find closing bracket.
|
|
for i := 1; i < len(format); i++ {
|
|
if format[i] == ']' {
|
|
width, ok, newi := parsenum(format, 1, i)
|
|
if !ok || newi != i {
|
|
return 0, i + 1, false
|
|
}
|
|
return width - 1, i + 1, true // arg numbers are one-indexed and skip paren.
|
|
}
|
|
}
|
|
return 0, 1, false
|
|
}
|
|
|
|
// argNumber returns the next argument to evaluate, which is either the value of the passed-in
|
|
// argNum or the value of the bracketed integer that begins format[i:]. It also returns
|
|
// the new value of i, that is, the index of the next byte of the format to process.
|
|
func (p *pp) argNumber(argNum int, format string, i int, numArgs int) (newArgNum, newi int, found bool) {
|
|
if len(format) <= i || format[i] != '[' {
|
|
return argNum, i, false
|
|
}
|
|
p.reordered = true
|
|
index, wid, ok := parseArgNumber(format[i:])
|
|
if ok && 0 <= index && index < numArgs {
|
|
return index, i + wid, true
|
|
}
|
|
p.goodArgNum = false
|
|
return argNum, i + wid, ok
|
|
}
|
|
|
|
func (p *pp) badArgNum(verb rune) {
|
|
_, _ = p.WriteString(percentBangString)
|
|
_, _ = p.WriteRune(verb)
|
|
_, _ = p.WriteString(badIndexString)
|
|
}
|
|
|
|
func (p *pp) missingArg(verb rune) {
|
|
_, _ = p.WriteString(percentBangString)
|
|
_, _ = p.WriteRune(verb)
|
|
_, _ = p.WriteString(missingString)
|
|
}
|
|
|
|
func (p *pp) doFormat(format string, a []Object) (err error) {
|
|
defer func() {
|
|
if r := recover(); r != nil {
|
|
if e, ok := r.(error); ok && e == ErrStringLimit {
|
|
err = e
|
|
return
|
|
}
|
|
panic(r)
|
|
}
|
|
}()
|
|
|
|
end := len(format)
|
|
argNum := 0 // we process one argument per non-trivial format
|
|
afterIndex := false // previous item in format was an index like [3].
|
|
p.reordered = false
|
|
formatLoop:
|
|
for i := 0; i < end; {
|
|
p.goodArgNum = true
|
|
lasti := i
|
|
for i < end && format[i] != '%' {
|
|
i++
|
|
}
|
|
if i > lasti {
|
|
_, _ = p.WriteString(format[lasti:i])
|
|
}
|
|
if i >= end {
|
|
// done processing format string
|
|
break
|
|
}
|
|
|
|
// Process one verb
|
|
i++
|
|
|
|
// Do we have flags?
|
|
p.fmt.clearflags()
|
|
simpleFormat:
|
|
for ; i < end; i++ {
|
|
c := format[i]
|
|
switch c {
|
|
case '#':
|
|
p.fmt.sharp = true
|
|
case '0':
|
|
p.fmt.zero = !p.fmt.minus // Only allow zero padding to the left.
|
|
case '+':
|
|
p.fmt.plus = true
|
|
case '-':
|
|
p.fmt.minus = true
|
|
p.fmt.zero = false // Do not pad with zeros to the right.
|
|
case ' ':
|
|
p.fmt.space = true
|
|
default:
|
|
// Fast path for common case of ascii lower case simple verbs
|
|
// without precision or width or argument indices.
|
|
if 'a' <= c && c <= 'z' && argNum < len(a) {
|
|
if c == 'v' {
|
|
// Go syntax
|
|
p.fmt.sharpV = p.fmt.sharp
|
|
p.fmt.sharp = false
|
|
// Struct-field syntax
|
|
p.fmt.plusV = p.fmt.plus
|
|
p.fmt.plus = false
|
|
}
|
|
p.printArg(a[argNum], rune(c))
|
|
argNum++
|
|
i++
|
|
continue formatLoop
|
|
}
|
|
// Format is more complex than simple flags and a verb or is malformed.
|
|
break simpleFormat
|
|
}
|
|
}
|
|
|
|
// Do we have an explicit argument index?
|
|
argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
|
|
|
|
// Do we have width?
|
|
if i < end && format[i] == '*' {
|
|
i++
|
|
p.fmt.wid, p.fmt.widPresent, argNum = intFromArg(a, argNum)
|
|
|
|
if !p.fmt.widPresent {
|
|
_, _ = p.WriteString(badWidthString)
|
|
}
|
|
|
|
// We have a negative width, so take its value and ensure
|
|
// that the minus flag is set
|
|
if p.fmt.wid < 0 {
|
|
p.fmt.wid = -p.fmt.wid
|
|
p.fmt.minus = true
|
|
p.fmt.zero = false // Do not pad with zeros to the right.
|
|
}
|
|
afterIndex = false
|
|
} else {
|
|
p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
|
|
if afterIndex && p.fmt.widPresent { // "%[3]2d"
|
|
p.goodArgNum = false
|
|
}
|
|
}
|
|
|
|
// Do we have precision?
|
|
if i+1 < end && format[i] == '.' {
|
|
i++
|
|
if afterIndex { // "%[3].2d"
|
|
p.goodArgNum = false
|
|
}
|
|
argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
|
|
if i < end && format[i] == '*' {
|
|
i++
|
|
p.fmt.prec, p.fmt.precPresent, argNum = intFromArg(a, argNum)
|
|
// Negative precision arguments don't make sense
|
|
if p.fmt.prec < 0 {
|
|
p.fmt.prec = 0
|
|
p.fmt.precPresent = false
|
|
}
|
|
if !p.fmt.precPresent {
|
|
_, _ = p.WriteString(badPrecString)
|
|
}
|
|
afterIndex = false
|
|
} else {
|
|
p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i, end)
|
|
if !p.fmt.precPresent {
|
|
p.fmt.prec = 0
|
|
p.fmt.precPresent = true
|
|
}
|
|
}
|
|
}
|
|
|
|
if !afterIndex {
|
|
argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
|
|
}
|
|
|
|
if i >= end {
|
|
_, _ = p.WriteString(noVerbString)
|
|
break
|
|
}
|
|
|
|
verb, size := rune(format[i]), 1
|
|
if verb >= utf8.RuneSelf {
|
|
verb, size = utf8.DecodeRuneInString(format[i:])
|
|
}
|
|
i += size
|
|
|
|
switch {
|
|
case verb == '%': // Percent does not absorb operands and ignores f.wid and f.prec.
|
|
_, _ = p.WriteSingleByte('%')
|
|
case !p.goodArgNum:
|
|
p.badArgNum(verb)
|
|
case argNum >= len(a): // No argument left over to print for the current verb.
|
|
p.missingArg(verb)
|
|
case verb == 'v':
|
|
// Go syntax
|
|
p.fmt.sharpV = p.fmt.sharp
|
|
p.fmt.sharp = false
|
|
// Struct-field syntax
|
|
p.fmt.plusV = p.fmt.plus
|
|
p.fmt.plus = false
|
|
fallthrough
|
|
default:
|
|
p.printArg(a[argNum], verb)
|
|
argNum++
|
|
}
|
|
}
|
|
|
|
// Check for extra arguments unless the call accessed the arguments
|
|
// out of order, in which case it's too expensive to detect if they've all
|
|
// been used and arguably OK if they're not.
|
|
if !p.reordered && argNum < len(a) {
|
|
p.fmt.clearflags()
|
|
_, _ = p.WriteString(extraString)
|
|
for i, arg := range a[argNum:] {
|
|
if i > 0 {
|
|
_, _ = p.WriteString(commaSpaceString)
|
|
}
|
|
if arg == nil {
|
|
_, _ = p.WriteString(UndefinedValue.String())
|
|
} else {
|
|
_, _ = p.WriteString(arg.TypeName())
|
|
_, _ = p.WriteSingleByte('=')
|
|
p.printArg(arg, 'v')
|
|
}
|
|
}
|
|
_, _ = p.WriteSingleByte(')')
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Format formats according to a format specifier and returns the resulting string.
|
|
func Format(format string, a ...Object) (string, error) {
|
|
p := newPrinter()
|
|
err := p.doFormat(format, a)
|
|
s := string(p.buf)
|
|
p.free()
|
|
|
|
return s, err
|
|
}
|