mirror of
https://github.com/cwinfo/yggdrasil-go.git
synced 2024-11-25 21:51:38 +00:00
cleanup
This commit is contained in:
parent
0ad801bcfe
commit
189628b381
@ -141,7 +141,42 @@ func (l *switchLocator) DEBUG_getCoords() []byte {
|
||||
}
|
||||
|
||||
func (c *Core) DEBUG_switchLookup(dest []byte) switchPort {
|
||||
return c.switchTable.lookup(dest)
|
||||
return c.switchTable.DEBUG_lookup(dest)
|
||||
}
|
||||
|
||||
// This does the switch layer lookups that decide how to route traffic.
|
||||
// Traffic uses greedy routing in a metric space, where the metric distance between nodes is equal to the distance between them on the tree.
|
||||
// Traffic must be routed to a node that is closer to the destination via the metric space distance.
|
||||
// In the event that two nodes are equally close, it gets routed to the one with the longest uptime (due to the order that things are iterated over).
|
||||
// The size of the outgoing packet queue is added to a node's tree distance when the cost of forwarding to a node, subject to the constraint that the real tree distance puts them closer to the destination than ourself.
|
||||
// Doing so adds a limited form of backpressure routing, based on local information, which allows us to forward traffic around *local* bottlenecks, provided that another greedy path exists.
|
||||
func (t *switchTable) DEBUG_lookup(dest []byte) switchPort {
|
||||
table := t.getTable()
|
||||
myDist := table.self.dist(dest)
|
||||
if myDist == 0 {
|
||||
return 0
|
||||
}
|
||||
// cost is in units of (expected distance) + (expected queue size), where expected distance is used as an approximation of the minimum backpressure gradient needed for packets to flow
|
||||
ports := t.core.peers.getPorts()
|
||||
var best switchPort
|
||||
bestCost := int64(^uint64(0) >> 1)
|
||||
for _, info := range table.elems {
|
||||
dist := info.locator.dist(dest)
|
||||
if !(dist < myDist) {
|
||||
continue
|
||||
}
|
||||
//p, isIn := ports[info.port]
|
||||
_, isIn := ports[info.port]
|
||||
if !isIn {
|
||||
continue
|
||||
}
|
||||
cost := int64(dist) // + p.getQueueSize()
|
||||
if cost < bestCost {
|
||||
best = info.port
|
||||
bestCost = cost
|
||||
}
|
||||
}
|
||||
return best
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -482,41 +482,6 @@ func (t *switchTable) getTable() lookupTable {
|
||||
return t.table.Load().(lookupTable)
|
||||
}
|
||||
|
||||
// This does the switch layer lookups that decide how to route traffic.
|
||||
// Traffic uses greedy routing in a metric space, where the metric distance between nodes is equal to the distance between them on the tree.
|
||||
// Traffic must be routed to a node that is closer to the destination via the metric space distance.
|
||||
// In the event that two nodes are equally close, it gets routed to the one with the longest uptime (due to the order that things are iterated over).
|
||||
// The size of the outgoing packet queue is added to a node's tree distance when the cost of forwarding to a node, subject to the constraint that the real tree distance puts them closer to the destination than ourself.
|
||||
// Doing so adds a limited form of backpressure routing, based on local information, which allows us to forward traffic around *local* bottlenecks, provided that another greedy path exists.
|
||||
func (t *switchTable) lookup(dest []byte) switchPort {
|
||||
table := t.getTable()
|
||||
myDist := table.self.dist(dest)
|
||||
if myDist == 0 {
|
||||
return 0
|
||||
}
|
||||
// cost is in units of (expected distance) + (expected queue size), where expected distance is used as an approximation of the minimum backpressure gradient needed for packets to flow
|
||||
ports := t.core.peers.getPorts()
|
||||
var best switchPort
|
||||
bestCost := int64(^uint64(0) >> 1)
|
||||
for _, info := range table.elems {
|
||||
dist := info.locator.dist(dest)
|
||||
if !(dist < myDist) {
|
||||
continue
|
||||
}
|
||||
//p, isIn := ports[info.port]
|
||||
_, isIn := ports[info.port]
|
||||
if !isIn {
|
||||
continue
|
||||
}
|
||||
cost := int64(dist) // + p.getQueueSize()
|
||||
if cost < bestCost {
|
||||
best = info.port
|
||||
bestCost = cost
|
||||
}
|
||||
}
|
||||
return best
|
||||
}
|
||||
|
||||
// Starts the switch worker
|
||||
func (t *switchTable) start() error {
|
||||
t.core.log.Println("Starting switch")
|
||||
@ -524,23 +489,6 @@ func (t *switchTable) start() error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func (t *switchTable) handleIn_old(packet []byte) {
|
||||
// Get the coords, skipping the first byte (the pType)
|
||||
_, pTypeLen := wire_decode_uint64(packet)
|
||||
coords, coordLen := wire_decode_coords(packet[pTypeLen:])
|
||||
if coordLen >= len(packet) {
|
||||
util_putBytes(packet)
|
||||
return
|
||||
} // No payload
|
||||
toPort := t.lookup(coords)
|
||||
to := t.core.peers.getPorts()[toPort]
|
||||
if to == nil {
|
||||
util_putBytes(packet)
|
||||
return
|
||||
}
|
||||
to.sendPacket(packet)
|
||||
}
|
||||
|
||||
// Check if a packet should go to the self node
|
||||
// This means there's no node closer to the destination than us
|
||||
// This is mainly used to identify packets addressed to us, or that hit a blackhole
|
||||
@ -585,6 +533,7 @@ func (t *switchTable) handleIn(packet []byte, idle map[switchPort]struct{}) bool
|
||||
} // No payload
|
||||
ports := t.core.peers.getPorts()
|
||||
if t.selfIsClosest(coords) {
|
||||
// TODO? call the router directly, and remove the whole concept of a self peer?
|
||||
ports[0].sendPacket(packet)
|
||||
return true
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user