5
0
mirror of https://github.com/cwinfo/yggdrasil-go.git synced 2024-09-19 16:09:36 +00:00

Merge pull request #215 from Arceliar/switch

Latency-based parent selection for the switch
This commit is contained in:
Arceliar 2018-12-02 17:26:26 -06:00 committed by GitHub
commit 684632eb3d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -18,10 +18,12 @@ import (
"time" "time"
) )
const switch_timeout = time.Minute const (
const switch_updateInterval = switch_timeout / 2 switch_timeout = time.Minute
const switch_throttle = switch_updateInterval / 2 switch_updateInterval = switch_timeout / 2
const switch_max_time = time.Hour switch_throttle = switch_updateInterval / 2
switch_faster_threshold = 240 //Number of switch updates before switching to a faster parent
)
// The switch locator represents the topology and network state dependent info about a node, minus the signatures that go with it. // The switch locator represents the topology and network state dependent info about a node, minus the signatures that go with it.
// Nodes will pick the best root they see, provided that the root continues to push out updates with new timestamps. // Nodes will pick the best root they see, provided that the root continues to push out updates with new timestamps.
@ -119,13 +121,13 @@ func (x *switchLocator) isAncestorOf(y *switchLocator) bool {
// Information about a peer, used by the switch to build the tree and eventually make routing decisions. // Information about a peer, used by the switch to build the tree and eventually make routing decisions.
type peerInfo struct { type peerInfo struct {
key sigPubKey // ID of this peer key sigPubKey // ID of this peer
locator switchLocator // Should be able to respond with signatures upon request locator switchLocator // Should be able to respond with signatures upon request
degree uint64 // Self-reported degree degree uint64 // Self-reported degree
time time.Time // Time this node was last seen time time.Time // Time this node was last seen
firstSeen time.Time faster map[switchPort]uint64 // Counter of how often a node is faster than the current parent, penalized extra if slower
port switchPort // Interface number of this peer port switchPort // Interface number of this peer
msg switchMsg // The wire switchMsg used msg switchMsg // The wire switchMsg used
} }
// This is just a uint64 with a named type for clarity reasons. // This is just a uint64 with a named type for clarity reasons.
@ -257,7 +259,7 @@ func (t *switchTable) forgetPeer(port switchPort) {
return return
} }
for _, info := range t.data.peers { for _, info := range t.data.peers {
t.unlockedHandleMsg(&info.msg, info.port) t.unlockedHandleMsg(&info.msg, info.port, true)
} }
} }
@ -331,7 +333,7 @@ func (t *switchTable) checkRoot(msg *switchMsg) bool {
func (t *switchTable) handleMsg(msg *switchMsg, fromPort switchPort) { func (t *switchTable) handleMsg(msg *switchMsg, fromPort switchPort) {
t.mutex.Lock() t.mutex.Lock()
defer t.mutex.Unlock() defer t.mutex.Unlock()
t.unlockedHandleMsg(msg, fromPort) t.unlockedHandleMsg(msg, fromPort, false)
} }
// This updates the switch with information about a peer. // This updates the switch with information about a peer.
@ -339,7 +341,8 @@ func (t *switchTable) handleMsg(msg *switchMsg, fromPort switchPort) {
// That happens if this node is already our parent, or is advertising a better root, or is advertising a better path to the same root, etc... // That happens if this node is already our parent, or is advertising a better root, or is advertising a better path to the same root, etc...
// There are a lot of very delicate order sensitive checks here, so its' best to just read the code if you need to understand what it's doing. // There are a lot of very delicate order sensitive checks here, so its' best to just read the code if you need to understand what it's doing.
// It's very important to not change the order of the statements in the case function unless you're absolutely sure that it's safe, including safe if used along side nodes that used the previous order. // It's very important to not change the order of the statements in the case function unless you're absolutely sure that it's safe, including safe if used along side nodes that used the previous order.
func (t *switchTable) unlockedHandleMsg(msg *switchMsg, fromPort switchPort) { // Set the third arg to true if you're reprocessing an old message, e.g. to find a new parent after one disconnects, to avoid updating some timing related things.
func (t *switchTable) unlockedHandleMsg(msg *switchMsg, fromPort switchPort, reprocessing bool) {
// TODO directly use a switchMsg instead of switchMessage + sigs // TODO directly use a switchMsg instead of switchMessage + sigs
now := time.Now() now := time.Now()
// Set up the sender peerInfo // Set up the sender peerInfo
@ -354,11 +357,6 @@ func (t *switchTable) unlockedHandleMsg(msg *switchMsg, fromPort switchPort) {
prevKey = hop.Next prevKey = hop.Next
} }
sender.msg = *msg sender.msg = *msg
oldSender, isIn := t.data.peers[fromPort]
if !isIn {
oldSender.firstSeen = now
}
sender.firstSeen = oldSender.firstSeen
sender.port = fromPort sender.port = fromPort
sender.time = now sender.time = now
// Decide what to do // Decide what to do
@ -377,11 +375,43 @@ func (t *switchTable) unlockedHandleMsg(msg *switchMsg, fromPort switchPort) {
return true return true
} }
doUpdate := false doUpdate := false
oldSender := t.data.peers[fromPort]
if !equiv(&sender.locator, &oldSender.locator) { if !equiv(&sender.locator, &oldSender.locator) {
doUpdate = true doUpdate = true
sender.firstSeen = now
} }
// Update the matrix of peer "faster" thresholds
if reprocessing {
sender.faster = oldSender.faster
} else {
sender.faster = make(map[switchPort]uint64, len(oldSender.faster))
for port, peer := range t.data.peers {
if port == fromPort {
continue
}
switch {
case msg.Root != peer.locator.root:
// Different roots, blindly guess that the relationships will stay the same?
sender.faster[port] = oldSender.faster[peer.port]
case sender.locator.tstamp <= peer.locator.tstamp:
// Slower than this node, penalize (more than the reward amount)
if oldSender.faster[port] > 1 {
sender.faster[port] = oldSender.faster[peer.port] - 2
} else {
sender.faster[port] = 0
}
default:
// We were faster than this node, so increment, as long as we don't overflow because of it
if oldSender.faster[peer.port] < switch_faster_threshold {
sender.faster[port] = oldSender.faster[peer.port] + 1
} else {
sender.faster[port] = switch_faster_threshold
}
}
}
}
// Update sender
t.data.peers[fromPort] = sender t.data.peers[fromPort] = sender
// Decide if we should also update our root info to make the sender our parent
updateRoot := false updateRoot := false
oldParent, isIn := t.data.peers[t.parent] oldParent, isIn := t.data.peers[t.parent]
noParent := !isIn noParent := !isIn
@ -396,20 +426,8 @@ func (t *switchTable) unlockedHandleMsg(msg *switchMsg, fromPort switchPort) {
} }
return true return true
}() }()
// Get the time we've known about the sender (or old parent's) current coords, up to a maximum of `switch_max_time`.
sTime := now.Sub(sender.firstSeen)
if sTime > switch_max_time {
sTime = switch_max_time
}
pTime := now.Sub(oldParent.firstSeen)
if pTime > switch_max_time {
pTime = switch_max_time
}
// Really want to compare sLen/sTime and pLen/pTime
// Cross multiplied to avoid divide-by-zero
cost := float64(len(sender.locator.coords)) * pTime.Seconds()
pCost := float64(len(t.data.locator.coords)) * sTime.Seconds()
dropTstamp, isIn := t.drop[sender.locator.root] dropTstamp, isIn := t.drop[sender.locator.root]
// Decide if we need to update info about the root or change parents.
switch { switch {
case !noLoop: case !noLoop:
// This route loops, so we can't use the sender as our parent. // This route loops, so we can't use the sender as our parent.
@ -425,22 +443,30 @@ func (t *switchTable) unlockedHandleMsg(msg *switchMsg, fromPort switchPort) {
case noParent: case noParent:
// We currently have no working parent, and at this point in the switch statement, anything is better than nothing. // We currently have no working parent, and at this point in the switch statement, anything is better than nothing.
updateRoot = true updateRoot = true
case cost < pCost: case sender.faster[t.parent] >= switch_faster_threshold:
// The sender has a better combination of path length and reliability than the current parent. // The is reliably faster than the current parent.
updateRoot = true
case reprocessing && sender.faster[t.parent] > oldParent.faster[sender.port]:
// The sender seems to be reliably faster than the current parent, so switch to them instead.
updateRoot = true updateRoot = true
case sender.port != t.parent: case sender.port != t.parent:
// Ignore further cases if the sender isn't our parent. // Ignore further cases if the sender isn't our parent.
case !equiv(&sender.locator, &t.data.locator): case !reprocessing && !equiv(&sender.locator, &t.data.locator):
// Special case: // Special case:
// If coords changed, then this may now be a worse parent than before. // If coords changed, then we need to penalize this node somehow, to prevent flapping.
// Re-parent the node (de-parent and reprocess the message). // First, reset all faster-related info to 0.
// Then reprocess *all* messages to look for a better parent. // Then, de-parent the node and reprocess all messages to find a new parent.
// This is so we don't keep using this node as our parent if there's something better.
t.parent = 0 t.parent = 0
t.unlockedHandleMsg(msg, fromPort) sender.faster = nil
for _, info := range t.data.peers { for _, peer := range t.data.peers {
t.unlockedHandleMsg(&info.msg, info.port) if peer.port == sender.port {
continue
}
delete(peer.faster, sender.port)
t.unlockedHandleMsg(&peer.msg, peer.port, true)
} }
// Process the sender last, to avoid keeping them as a parent if at all possible.
t.unlockedHandleMsg(&sender.msg, sender.port, true)
case now.Sub(t.time) < switch_throttle: case now.Sub(t.time) < switch_throttle:
// We've already gotten an update from this root recently, so ignore this one to avoid flooding. // We've already gotten an update from this root recently, so ignore this one to avoid flooding.
case sender.locator.tstamp > t.data.locator.tstamp: case sender.locator.tstamp > t.data.locator.tstamp: