5
0
mirror of https://github.com/cwinfo/yggdrasil-go.git synced 2024-11-25 23:01:38 +00:00

WIP have peer actors queue packets, temporarily a single simple FIFO queue with head drop

This commit is contained in:
Arceliar 2020-04-03 00:32:26 -05:00
parent 9834f222db
commit 945930aa2c
6 changed files with 91 additions and 338 deletions

View File

@ -199,35 +199,6 @@ func (c *Core) GetDHT() []DHTEntry {
return dhtentries
}
// GetSwitchQueues returns information about the switch queues that are
// currently in effect. These values can change within an instant.
func (c *Core) GetSwitchQueues() SwitchQueues {
var switchqueues SwitchQueues
switchTable := &c.switchTable
getSwitchQueues := func() {
switchqueues = SwitchQueues{
Count: uint64(len(switchTable.queues.bufs)),
Size: switchTable.queues.size,
HighestCount: uint64(switchTable.queues.maxbufs),
HighestSize: switchTable.queues.maxsize,
MaximumSize: switchTable.queues.totalMaxSize,
}
for port, pbuf := range switchTable.queues.bufs {
for k, v := range pbuf {
queue := SwitchQueue{
ID: k,
Size: v.size,
Packets: uint64(len(v.packets)),
Port: uint64(port),
}
switchqueues.Queues = append(switchqueues.Queues, queue)
}
}
}
phony.Block(&c.switchTable, getSwitchQueues)
return switchqueues
}
// GetSessions returns a list of open sessions from this node to other nodes.
func (c *Core) GetSessions() []Session {
var sessions []Session

View File

@ -62,7 +62,7 @@ type linkInterface struct {
keepAliveTimer *time.Timer // Fires to send keep-alive traffic
stallTimer *time.Timer // Fires to signal that no incoming traffic (including keep-alive) has been seen
closeTimer *time.Timer // Fires when the link has been idle so long we need to close it
inSwitch bool // True if the switch is tracking this link
isIdle bool // True if the peer actor knows the link is idle
stalled bool // True if we haven't been receiving any response traffic
unstalled bool // False if an idle notification to the switch hasn't been sent because we stalled (or are first starting up)
}
@ -278,7 +278,7 @@ const (
func (intf *linkInterface) notifySending(size int, isLinkTraffic bool) {
intf.Act(&intf.writer, func() {
if !isLinkTraffic {
intf.inSwitch = false
intf.isIdle = false
}
intf.sendTimer = time.AfterFunc(sendTime, intf.notifyBlockedSend)
intf._cancelStallTimer()
@ -311,7 +311,7 @@ func (intf *linkInterface) notifySent(size int, isLinkTraffic bool) {
intf.sendTimer.Stop()
intf.sendTimer = nil
if !isLinkTraffic {
intf._notifySwitch()
intf._notifyIdle()
}
if size > 0 && intf.stallTimer == nil {
intf.stallTimer = time.AfterFunc(stallTime, intf.notifyStalled)
@ -320,15 +320,13 @@ func (intf *linkInterface) notifySent(size int, isLinkTraffic bool) {
}
// Notify the switch that we're ready for more traffic, assuming we're not in a stalled state
func (intf *linkInterface) _notifySwitch() {
if !intf.inSwitch {
func (intf *linkInterface) _notifyIdle() {
if !intf.isIdle {
if intf.stalled {
intf.unstalled = false
} else {
intf.inSwitch = true
intf.link.core.switchTable.Act(intf, func() {
intf.link.core.switchTable._idleIn(intf.peer.port)
})
intf.isIdle = true
intf.peer.Act(intf, intf.peer._handleIdle)
}
}
}
@ -364,7 +362,7 @@ func (intf *linkInterface) notifyRead(size int) {
}
intf.stalled = false
if !intf.unstalled {
intf._notifySwitch()
intf._notifyIdle()
intf.unstalled = true
}
if size > 0 && intf.stallTimer == nil {

View File

@ -0,0 +1,39 @@
package yggdrasil
import "github.com/yggdrasil-network/yggdrasil-go/src/util"
// TODO take max size from config
const MAX_PACKET_QUEUE_SIZE = 1048576 // 1 MB
// TODO separate queues per e.g. traffic flow
type packetQueue struct {
packets [][]byte
size uint32
}
func (q *packetQueue) cleanup() {
for q.size > MAX_PACKET_QUEUE_SIZE {
if packet, success := q.pop(); success {
util.PutBytes(packet)
} else {
panic("attempted to drop packet from empty queue")
break
}
}
}
func (q *packetQueue) push(packet []byte) {
q.packets = append(q.packets, packet)
q.size += uint32(len(packet))
q.cleanup()
}
func (q *packetQueue) pop() ([]byte, bool) {
if len(q.packets) > 0 {
packet := q.packets[0]
q.packets = q.packets[1:]
q.size -= uint32(len(packet))
return packet, true
}
return nil, false
}

View File

@ -100,6 +100,8 @@ type peer struct {
bytesRecvd uint64
ports map[switchPort]*peer
table *lookupTable
queue packetQueue
idle bool
}
func (ps *peers) updateTables(from phony.Actor, table *lookupTable) {
@ -243,6 +245,13 @@ func (p *peer) _handlePacket(packet []byte) {
}
}
// Get the coords of a packet without decoding
func peer_getPacketCoords(packet []byte) []byte {
_, pTypeLen := wire_decode_uint64(packet)
coords, _ := wire_decode_coords(packet[pTypeLen:])
return coords
}
// Called to handle traffic or protocolTraffic packets.
// In either case, this reads from the coords of the packet header, does a switch lookup, and forwards to the next node.
func (p *peer) _handleTraffic(packet []byte) {
@ -250,7 +259,7 @@ func (p *peer) _handleTraffic(packet []byte) {
// Drop traffic if the peer isn't in the switch
return
}
coords := switch_getPacketCoords(packet)
coords := peer_getPacketCoords(packet)
next := p.table.lookup(coords)
if nPeer, isIn := p.ports[next]; isIn {
nPeer.sendPacketsFrom(p, [][]byte{packet})
@ -264,17 +273,33 @@ func (p *peer) sendPacketsFrom(from phony.Actor, packets [][]byte) {
})
}
// This just calls p.out(packet) for now.
func (p *peer) _sendPackets(packets [][]byte) {
// Is there ever a case where something more complicated is needed?
// What if p.out blocks?
var size int
for _, packet := range packets {
size += len(packet)
p.queue.push(packet)
}
if p.idle {
p.idle = false
p._handleIdle()
}
}
func (p *peer) _handleIdle() {
var packets [][]byte
var size uint64
for size < 65535 {
if packet, success := p.queue.pop(); success {
packets = append(packets, packet)
size += uint64(len(packet))
} else {
break
}
}
if len(packets) > 0 {
p.bytesSent += uint64(size)
p.out(packets)
} else {
p.idle = true
}
p.bytesSent += uint64(size)
// FIXME need to manage queues here or else things can block!
p.out(packets)
}
// This wraps the packet in the inner (ephemeral) and outer (permanent) crypto layers.

View File

@ -67,7 +67,14 @@ func (r *router) init(core *Core) {
// FIXME don't block here!
p = r.core.peers._newPeer(&r.core.boxPub, &r.core.sigPub, &crypto.BoxSharedKey{}, &self, nil)
})
p.out = func(packets [][]byte) { r.handlePackets(p, packets) }
p.out = func(packets [][]byte) {
r.handlePackets(p, packets)
r.Act(p, func() {
// after the router handle the packets, notify the peer that it's ready for more
p.Act(r, p._handleIdle)
})
}
p.Act(r, p._handleIdle)
r.out = func(bs []byte) { p.handlePacketFrom(r, bs) }
r.nodeinfo.init(r.core)
r.core.config.Mutex.RLock()

View File

@ -164,13 +164,11 @@ type switchData struct {
type switchTable struct {
core *Core
key crypto.SigPubKey // Our own key
phony.Inbox // Owns the below
time time.Time // Time when locator.tstamp was last updated
drop map[crypto.SigPubKey]int64 // Tstamp associated with a dropped root
parent switchPort // Port of whatever peer is our parent, or self if we're root
data switchData //
phony.Inbox // Owns the below
queues switch_buffers // Queues - not atomic so ONLY use through the actor
idle map[switchPort]struct{} // idle peers - not atomic so ONLY use through the actor
}
// Minimum allowed total size of switch queues.
@ -185,18 +183,7 @@ func (t *switchTable) init(core *Core) {
peers := make(map[switchPort]peerInfo)
t.data = switchData{locator: locator, peers: peers}
t.drop = make(map[crypto.SigPubKey]int64)
phony.Block(t, func() {
core.config.Mutex.RLock()
if core.config.Current.SwitchOptions.MaxTotalQueueSize > SwitchQueueTotalMinSize {
t.queues.totalMaxSize = core.config.Current.SwitchOptions.MaxTotalQueueSize
} else {
t.queues.totalMaxSize = SwitchQueueTotalMinSize
}
core.config.Mutex.RUnlock()
t.queues.bufs = make(map[switchPort]map[string]switch_buffer)
t.idle = make(map[switchPort]struct{})
})
t._updateTable()
phony.Block(t, t._updateTable)
}
func (t *switchTable) reconfigure() {
@ -557,73 +544,6 @@ func (t *switchTable) start() error {
return nil
}
type closerInfo struct {
elem tableElem
dist int
}
// Return a map of ports onto distance, keeping only ports closer to the destination than this node
// If the map is empty (or nil), then no peer is closer
/*
func (t *switchTable) getCloser(dest []byte) []closerInfo {
table := t.getTable()
myDist := table.self.dist(dest)
if myDist == 0 {
// Skip the iteration step if it's impossible to be closer
return nil
}
var closer []closerInfo
for _, info := range table.elems {
dist := info.locator.dist(dest)
if dist < myDist {
closer = append(closer, closerInfo{info, dist})
}
}
return closer
}
*/
// Returns true if the peer is closer to the destination than ourself
/*
func (t *switchTable) portIsCloser(dest []byte, port switchPort) bool {
table := t.getTable()
if info, isIn := table.elems[port]; isIn {
theirDist := info.locator.dist(dest)
myDist := table.self.dist(dest)
return theirDist < myDist
} else {
return false
}
}
*/
// Get the coords of a packet without decoding
func switch_getPacketCoords(packet []byte) []byte {
_, pTypeLen := wire_decode_uint64(packet)
coords, _ := wire_decode_coords(packet[pTypeLen:])
return coords
}
// Returns a unique string for each stream of traffic
// Equal to coords
// The sender may append arbitrary info to the end of coords (as long as it's begins with a 0x00) to designate separate traffic streams
// Currently, it's the IPv6 next header type and the first 2 uint16 of the next header
// This is equivalent to the TCP/UDP protocol numbers and the source / dest ports
// TODO figure out if something else would make more sense (other transport protocols?)
func switch_getPacketStreamID(packet []byte) string {
return string(switch_getPacketCoords(packet))
}
// Returns the flowlabel from a given set of coords
func switch_getFlowLabelFromCoords(in []byte) []byte {
for i, v := range in {
if v == 0 {
return in[i+1:]
}
}
return []byte{}
}
// Find the best port to forward to for a given set of coords
func (t *lookupTable) lookup(coords []byte) switchPort {
var bestPort switchPort
@ -660,210 +580,3 @@ func (t *lookupTable) lookup(coords []byte) switchPort {
}
return bestPort
}
// Handle an incoming packet
// Either send it to ourself, or to the first idle peer that's free
// Returns true if the packet has been handled somehow, false if it should be queued
func (t *switchTable) _handleIn(packet []byte, idle map[switchPort]struct{}) (bool, switchPort) {
/*
coords := switch_getPacketCoords(packet)
table := t.getTable()
port := table.lookup(coords)
ports := t.core.peers.getPorts()
peer := ports[port]
if peer == nil {
// FIXME hack, if the peer disappeared durring a race then don't buffer
return true, 0
}
if _, isIdle := idle[port]; isIdle || port == 0 {
// Either no closer peers, or the closest peer is idle
delete(idle, port)
peer.sendPacketsFrom(t, [][]byte{packet})
return true, port
}
// There's a closer peer, but it's not idle, so buffer it
return false, port
*/
return true, 0
}
// Info about a buffered packet
type switch_packetInfo struct {
bytes []byte
time time.Time // Timestamp of when the packet arrived
}
// Used to keep track of buffered packets
type switch_buffer struct {
packets []switch_packetInfo // Currently buffered packets, which may be dropped if it grows too large
size uint64 // Total queue size in bytes
}
type switch_buffers struct {
totalMaxSize uint64
bufs map[switchPort]map[string]switch_buffer // Buffers indexed by port and StreamID
size uint64 // Total size of all buffers, in bytes
maxbufs int
maxsize uint64
}
func (b *switch_buffers) _cleanup(t *switchTable) {
/*
for port, pbufs := range b.bufs {
for streamID, buf := range pbufs {
// Remove queues for which we have no next hop
packet := buf.packets[0]
coords := switch_getPacketCoords(packet.bytes)
if len(t.getCloser(coords)) == 0 {
for _, packet := range buf.packets {
util.PutBytes(packet.bytes)
}
b.size -= buf.size
delete(pbufs, streamID)
}
}
if len(pbufs) == 0 {
delete(b.bufs, port)
}
}
for b.size > b.totalMaxSize {
// Drop a random queue
target := rand.Uint64() % b.size
var size uint64 // running total
for port, pbufs := range b.bufs {
for streamID, buf := range pbufs {
size += buf.size
if size < target {
continue
}
var packet switch_packetInfo
packet, buf.packets = buf.packets[0], buf.packets[1:]
buf.size -= uint64(len(packet.bytes))
b.size -= uint64(len(packet.bytes))
util.PutBytes(packet.bytes)
if len(buf.packets) == 0 {
delete(pbufs, streamID)
if len(pbufs) == 0 {
delete(b.bufs, port)
}
} else {
// Need to update the map, since buf was retrieved by value
pbufs[streamID] = buf
}
break
}
}
}
*/
}
// Handles incoming idle notifications
// Loops over packets and sends the newest one that's OK for this peer to send
// Returns true if the peer is no longer idle, false if it should be added to the idle list
func (t *switchTable) _handleIdle(port switchPort) bool {
// TODO? only send packets for which this is the best next hop that isn't currently blocked sending
/*
to := t.core.peers.getPorts()[port]
if to == nil {
return true
}
var packets [][]byte
var psize int
t.queues._cleanup(t)
now := time.Now()
pbufs := t.queues.bufs[port]
for psize < 65535 {
var best *string
var bestPriority float64
for streamID, buf := range pbufs {
// Filter over the streams that this node is closer to
// Keep the one with the smallest queue
packet := buf.packets[0]
priority := float64(now.Sub(packet.time)) / float64(buf.size)
if priority >= bestPriority {
b := streamID // copy since streamID is mutated in the loop
best = &b
bestPriority = priority
}
}
if best != nil {
buf := pbufs[*best]
var packet switch_packetInfo
// TODO decide if this should be LIFO or FIFO
packet, buf.packets = buf.packets[0], buf.packets[1:]
buf.size -= uint64(len(packet.bytes))
t.queues.size -= uint64(len(packet.bytes))
if len(buf.packets) == 0 {
delete(pbufs, *best)
if len(pbufs) == 0 {
delete(t.queues.bufs, port)
}
} else {
// Need to update the map, since buf was retrieved by value
pbufs[*best] = buf
}
packets = append(packets, packet.bytes)
psize += len(packet.bytes)
} else {
// Finished finding packets
break
}
}
if len(packets) > 0 {
to.sendPacketsFrom(t, packets)
return true
}
return false
*/
return false
}
func (t *switchTable) packetInFrom(from phony.Actor, bytes []byte) {
t.Act(from, func() {
t._packetIn(bytes)
})
}
func (t *switchTable) _packetIn(bytes []byte) {
// Try to send it somewhere (or drop it if it's corrupt or at a dead end)
if sent, best := t._handleIn(bytes, t.idle); !sent {
// There's nobody free to take it right now, so queue it for later
packet := switch_packetInfo{bytes, time.Now()}
streamID := switch_getPacketStreamID(packet.bytes)
if _, isIn := t.queues.bufs[best]; !isIn {
t.queues.bufs[best] = make(map[string]switch_buffer)
}
buf, bufExists := t.queues.bufs[best][streamID]
buf.packets = append(buf.packets, packet)
buf.size += uint64(len(packet.bytes))
t.queues.size += uint64(len(packet.bytes))
// Keep a track of the max total queue size
if t.queues.size > t.queues.maxsize {
t.queues.maxsize = t.queues.size
}
t.queues.bufs[best][streamID] = buf
if !bufExists {
// Keep a track of the max total queue count. Only recalculate this
// when the queue is new because otherwise repeating len(dict) might
// cause unnecessary processing overhead
var count int
for _, pbufs := range t.queues.bufs {
count += len(pbufs)
}
if count > t.queues.maxbufs {
t.queues.maxbufs = count
}
}
t.queues._cleanup(t)
}
}
func (t *switchTable) _idleIn(port switchPort) {
// Try to find something to send to this peer
if !t._handleIdle(port) {
// Didn't find anything ready to send yet, so stay idle
t.idle[port] = struct{}{}
}
}