package yggdrasil import ( "encoding/hex" "errors" "fmt" "io" "net" "net/url" "strings" "sync" //"sync/atomic" "time" "github.com/yggdrasil-network/yggdrasil-go/src/address" "github.com/yggdrasil-network/yggdrasil-go/src/crypto" "github.com/yggdrasil-network/yggdrasil-go/src/util" "github.com/Arceliar/phony" ) type link struct { core *Core mutex sync.RWMutex // protects interfaces below interfaces map[linkInfo]*linkInterface tcp tcp // TCP interface support // TODO timeout (to remove from switch), read from config.ReadTimeout } type linkInfo struct { box crypto.BoxPubKey // Their encryption key sig crypto.SigPubKey // Their signing key linkType string // Type of link, e.g. TCP, AWDL local string // Local name or address remote string // Remote name or address } type linkInterfaceMsgIO interface { readMsg() ([]byte, error) writeMsgs([][]byte) (int, error) close() error // These are temporary workarounds to stream semantics _sendMetaBytes([]byte) error _recvMetaBytes() ([]byte, error) } type linkInterface struct { name string link *link peer *peer msgIO linkInterfaceMsgIO info linkInfo incoming bool force bool closed chan struct{} } func (l *link) init(c *Core) error { l.core = c l.mutex.Lock() l.interfaces = make(map[linkInfo]*linkInterface) l.mutex.Unlock() if err := l.tcp.init(l); err != nil { c.log.Errorln("Failed to start TCP interface") return err } return nil } func (l *link) reconfigure(e chan error) { defer close(e) tcpResponse := make(chan error) go l.tcp.reconfigure(tcpResponse) for err := range tcpResponse { e <- err } } func (l *link) call(uri string, sintf string) error { u, err := url.Parse(uri) if err != nil { return err } pathtokens := strings.Split(strings.Trim(u.Path, "/"), "/") switch u.Scheme { case "tcp": l.tcp.call(u.Host, nil, sintf) case "socks": l.tcp.call(pathtokens[0], u.Host, sintf) default: return errors.New("unknown call scheme: " + u.Scheme) } return nil } func (l *link) listen(uri string) error { u, err := url.Parse(uri) if err != nil { return err } switch u.Scheme { case "tcp": _, err := l.tcp.listen(u.Host) return err default: return errors.New("unknown listen scheme: " + u.Scheme) } } func (l *link) create(msgIO linkInterfaceMsgIO, name, linkType, local, remote string, incoming, force bool) (*linkInterface, error) { // Technically anything unique would work for names, but lets pick something human readable, just for debugging intf := linkInterface{ name: name, link: l, msgIO: msgIO, info: linkInfo{ linkType: linkType, local: local, remote: remote, }, incoming: incoming, force: force, } return &intf, nil } func (intf *linkInterface) handler() error { // TODO split some of this into shorter functions, so it's easier to read, and for the FIXME duplicate peer issue mentioned later myLinkPub, myLinkPriv := crypto.NewBoxKeys() meta := version_getBaseMetadata() meta.box = intf.link.core.boxPub meta.sig = intf.link.core.sigPub meta.link = *myLinkPub metaBytes := meta.encode() // TODO timeouts on send/recv (goroutine for send/recv, channel select w/ timer) var err error if !util.FuncTimeout(func() { err = intf.msgIO._sendMetaBytes(metaBytes) }, 30*time.Second) { return errors.New("timeout on metadata send") } if err != nil { return err } if !util.FuncTimeout(func() { metaBytes, err = intf.msgIO._recvMetaBytes() }, 30*time.Second) { return errors.New("timeout on metadata recv") } if err != nil { return err } meta = version_metadata{} if !meta.decode(metaBytes) || !meta.check() { return errors.New("failed to decode metadata") } base := version_getBaseMetadata() if meta.ver > base.ver || meta.ver == base.ver && meta.minorVer > base.minorVer { intf.link.core.log.Errorln("Failed to connect to node: " + intf.name + " version: " + fmt.Sprintf("%d.%d", meta.ver, meta.minorVer)) return errors.New("failed to connect: wrong version") } // Check if we're authorized to connect to this key / IP if intf.incoming && !intf.force && !intf.link.core.peers.isAllowedEncryptionPublicKey(&meta.box) { intf.link.core.log.Warnf("%s connection from %s forbidden: AllowedEncryptionPublicKeys does not contain key %s", strings.ToUpper(intf.info.linkType), intf.info.remote, hex.EncodeToString(meta.box[:])) intf.msgIO.close() return nil } // Check if we already have a link to this node intf.info.box = meta.box intf.info.sig = meta.sig intf.link.mutex.Lock() if oldIntf, isIn := intf.link.interfaces[intf.info]; isIn { intf.link.mutex.Unlock() // FIXME we should really return an error and let the caller block instead // That lets them do things like close connections on its own, avoid printing a connection message in the first place, etc. intf.link.core.log.Debugln("DEBUG: found existing interface for", intf.name) intf.msgIO.close() if !intf.incoming { // Block outgoing connection attempts until the existing connection closes <-oldIntf.closed } return nil } else { intf.closed = make(chan struct{}) intf.link.interfaces[intf.info] = intf defer func() { intf.link.mutex.Lock() delete(intf.link.interfaces, intf.info) intf.link.mutex.Unlock() close(intf.closed) }() intf.link.core.log.Debugln("DEBUG: registered interface for", intf.name) } intf.link.mutex.Unlock() // Create peer shared := crypto.GetSharedKey(myLinkPriv, &meta.link) intf.peer = intf.link.core.peers.newPeer(&meta.box, &meta.sig, shared, intf, func() { intf.msgIO.close() }) if intf.peer == nil { return errors.New("failed to create peer") } defer func() { // More cleanup can go here intf.link.core.peers.removePeer(intf.peer.port) }() // Finish setting up the peer struct out := make(chan [][]byte, 1) defer close(out) intf.peer.out = func(msgs [][]byte) { defer func() { recover() }() out <- msgs } intf.peer.linkOut = make(chan []byte, 1) themAddr := address.AddrForNodeID(crypto.GetNodeID(&intf.info.box)) themAddrString := net.IP(themAddr[:]).String() themString := fmt.Sprintf("%s@%s", themAddrString, intf.info.remote) intf.link.core.log.Infof("Connected %s: %s, source %s", strings.ToUpper(intf.info.linkType), themString, intf.info.local) // Start the link loop go intf.peer.start() // Start the writer signalReady := make(chan struct{}, 1) signalSent := make(chan bool, 1) sendAck := make(chan struct{}, 1) sendBlocked := time.NewTimer(time.Second) defer util.TimerStop(sendBlocked) util.TimerStop(sendBlocked) go func() { defer close(signalReady) defer close(signalSent) interval := 4 * time.Second tcpTimer := time.NewTimer(interval) // used for backwards compat with old tcp defer util.TimerStop(tcpTimer) send := func(bss [][]byte) { sendBlocked.Reset(time.Second) size, _ := intf.msgIO.writeMsgs(bss) util.TimerStop(sendBlocked) select { case signalSent <- size > 0: default: } } for { // First try to send any link protocol traffic select { case msg := <-intf.peer.linkOut: send([][]byte{msg}) continue default: } // No protocol traffic to send, so reset the timer util.TimerStop(tcpTimer) tcpTimer.Reset(interval) // Now block until something is ready or the timer triggers keepalive traffic select { case <-tcpTimer.C: intf.link.core.log.Tracef("Sending (legacy) keep-alive to %s: %s, source %s", strings.ToUpper(intf.info.linkType), themString, intf.info.local) send([][]byte{nil}) case <-sendAck: intf.link.core.log.Tracef("Sending ack to %s: %s, source %s", strings.ToUpper(intf.info.linkType), themString, intf.info.local) send([][]byte{nil}) case msg := <-intf.peer.linkOut: send([][]byte{msg}) case msgs, ok := <-out: if !ok { return } send(msgs) for _, msg := range msgs { util.PutBytes(msg) } select { case signalReady <- struct{}{}: default: } //intf.link.core.log.Tracef("Sending packet to %s: %s, source %s", // strings.ToUpper(intf.info.linkType), themString, intf.info.local) } } }() //intf.link.core.switchTable.idleIn <- intf.peer.port // notify switch that we're idle // Used to enable/disable activity in the switch signalAlive := make(chan bool, 1) // True = real packet, false = keep-alive defer close(signalAlive) ret := make(chan error, 1) // How we signal the return value when multiple goroutines are involved go func() { var isAlive bool var isReady bool var sendTimerRunning bool var recvTimerRunning bool recvTime := 6 * time.Second // TODO set to ReadTimeout from the config, reset if it gets changed closeTime := 2 * switch_timeout // TODO or maybe this makes more sense for ReadTimeout?... sendTime := time.Second sendTimer := time.NewTimer(sendTime) defer util.TimerStop(sendTimer) recvTimer := time.NewTimer(recvTime) defer util.TimerStop(recvTimer) closeTimer := time.NewTimer(closeTime) defer util.TimerStop(closeTimer) for { //intf.link.core.log.Debugf("State of %s: %s, source %s :: isAlive %t isReady %t sendTimerRunning %t recvTimerRunning %t", // strings.ToUpper(intf.info.linkType), themString, intf.info.local, // isAlive, isReady, sendTimerRunning, recvTimerRunning) select { case gotMsg, ok := <-signalAlive: if !ok { return } util.TimerStop(closeTimer) closeTimer.Reset(closeTime) util.TimerStop(recvTimer) recvTimerRunning = false isAlive = true if !isReady { // (Re-)enable in the switch intf.link.core.switchTable.RecvFrom(nil, func() { intf.link.core.switchTable._idleIn(intf.peer.port) }) isReady = true } if gotMsg && !sendTimerRunning { // We got a message // Start a timer, if it expires then send a 0-sized ack to let them know we're alive util.TimerStop(sendTimer) sendTimer.Reset(sendTime) sendTimerRunning = true } if !gotMsg { intf.link.core.log.Tracef("Received ack from %s: %s, source %s", strings.ToUpper(intf.info.linkType), themString, intf.info.local) } case sentMsg, ok := <-signalSent: // Stop any running ack timer if !ok { return } util.TimerStop(sendTimer) sendTimerRunning = false if sentMsg && !recvTimerRunning { // We sent a message // Start a timer, if it expires and we haven't gotten any return traffic (including a 0-sized ack), then assume there's a problem util.TimerStop(recvTimer) recvTimer.Reset(recvTime) recvTimerRunning = true } case _, ok := <-signalReady: if !ok { return } if !isAlive { // Disable in the switch isReady = false } else { // Keep enabled in the switch intf.link.core.switchTable.RecvFrom(nil, func() { intf.link.core.switchTable._idleIn(intf.peer.port) }) isReady = true } case <-sendBlocked.C: // We blocked while trying to send something isReady = false intf.link.core.switchTable.blockPeer(intf.peer.port) case <-sendTimer.C: // We haven't sent anything, so signal a send of a 0 packet to let them know we're alive select { case sendAck <- struct{}{}: default: } case <-recvTimer.C: // We haven't received anything, so assume there's a problem and don't return this node to the switch until they start responding isAlive = false intf.link.core.switchTable.blockPeer(intf.peer.port) case <-closeTimer.C: // We haven't received anything in a really long time, so things have died at the switch level and then some... // Just close the connection at this point... select { case ret <- errors.New("timeout"): default: } intf.msgIO.close() } } }() // Run reader loop var helper phony.Inbox done := make(chan struct{}) var helperFunc func() helperFunc = func() { // The helper reads in a loop and sends to the peer // It loops by sending itself a message, which can be delayed by backpressure // So if the peer is busy, backpressure will pause reading until the peer catches up msg, err := intf.msgIO.readMsg() if len(msg) > 0 { // TODO rewrite this if the link becomes an actor intf.peer.handlePacketFrom(&helper, msg) } if err != nil { if err != io.EOF { select { case ret <- err: default: } } close(done) return } select { case signalAlive <- len(msg) > 0: default: } // Now try to read again helper.RecvFrom(nil, helperFunc) } // Start the read loop helper.RecvFrom(nil, helperFunc) <-done // Wait for the helper to exit //////////////////////////////////////////////////////////////////////////////// // Remember to set `err` to something useful before returning select { case err = <-ret: intf.link.core.log.Infof("Disconnected %s: %s, source %s; error: %s", strings.ToUpper(intf.info.linkType), themString, intf.info.local, err) default: err = nil intf.link.core.log.Infof("Disconnected %s: %s, source %s", strings.ToUpper(intf.info.linkType), themString, intf.info.local) } return err }