package yggdrasil // This sends packets to peers using TCP as a transport // It's generally better tested than the UDP implementation // Using it regularly is insane, but I find TCP easier to test/debug with it // Updating and optimizing the UDP version is a higher priority // TODO: // Something needs to make sure we're getting *valid* packets // Could be used to DoS (connect, give someone else's keys, spew garbage) // I guess the "peer" part should watch for link packets, disconnect? import "net" import "time" import "errors" import "sync" import "fmt" import "golang.org/x/net/proxy" const tcp_msgSize = 2048 + 65535 // TODO figure out what makes sense // wrapper function for non tcp/ip connections func setNoDelay(c net.Conn, delay bool) { tcp, ok := c.(*net.TCPConn) if ok { tcp.SetNoDelay(delay) } } type tcpInterface struct { core *Core serv net.Listener mutex sync.Mutex // Protecting the below calls map[string]struct{} conns map[tcpInfo](chan struct{}) } type tcpInfo struct { box boxPubKey sig sigPubKey localAddr string remoteAddr string } func (iface *tcpInterface) getAddr() *net.TCPAddr { return iface.serv.Addr().(*net.TCPAddr) } func (iface *tcpInterface) connect(addr string) { iface.call(addr) } func (iface *tcpInterface) connectSOCKS(socksaddr, peeraddr string) { go func() { dialer, err := proxy.SOCKS5("tcp", socksaddr, nil, proxy.Direct) if err == nil { conn, err := dialer.Dial("tcp", peeraddr) if err == nil { iface.callWithConn(&wrappedConn{ c: conn, raddr: &wrappedAddr{ network: "tcp", addr: peeraddr, }, }) } } }() } func (iface *tcpInterface) init(core *Core, addr string) (err error) { iface.core = core iface.serv, err = net.Listen("tcp", addr) if err == nil { iface.calls = make(map[string]struct{}) iface.conns = make(map[tcpInfo](chan struct{})) go iface.listener() } return err } func (iface *tcpInterface) listener() { defer iface.serv.Close() iface.core.log.Println("Listening for TCP on:", iface.serv.Addr().String()) for { sock, err := iface.serv.Accept() if err != nil { panic(err) } go iface.handler(sock, true) } } func (iface *tcpInterface) callWithConn(conn net.Conn) { go func() { raddr := conn.RemoteAddr().String() iface.mutex.Lock() _, isIn := iface.calls[raddr] iface.mutex.Unlock() if !isIn { iface.mutex.Lock() iface.calls[raddr] = struct{}{} iface.mutex.Unlock() defer func() { iface.mutex.Lock() delete(iface.calls, raddr) iface.mutex.Unlock() }() iface.handler(conn, false) } }() } func (iface *tcpInterface) call(saddr string) { go func() { quit := false iface.mutex.Lock() if _, isIn := iface.calls[saddr]; isIn { quit = true } else { iface.calls[saddr] = struct{}{} defer func() { iface.mutex.Lock() delete(iface.calls, saddr) iface.mutex.Unlock() }() } iface.mutex.Unlock() if !quit { conn, err := net.Dial("tcp", saddr) if err != nil { return } iface.handler(conn, false) } }() } func (iface *tcpInterface) handler(sock net.Conn, incoming bool) { defer sock.Close() // Get our keys myLinkPub, myLinkPriv := newBoxKeys() // ephemeral link keys keys := []byte{} keys = append(keys, tcp_key[:]...) keys = append(keys, iface.core.boxPub[:]...) keys = append(keys, iface.core.sigPub[:]...) keys = append(keys, myLinkPub[:]...) _, err := sock.Write(keys) if err != nil { return } timeout := time.Now().Add(6 * time.Second) sock.SetReadDeadline(timeout) n, err := sock.Read(keys) if err != nil { return } if n < len(keys) { /*panic("Partial key packet?") ;*/ return } info := tcpInfo{} // used as a map key, so don't include ephemeral link eys var theirLinkPub boxPubKey if !tcp_chop_keys(&info.box, &info.sig, &theirLinkPub, &keys) { /*panic("Invalid key packet?") ;*/ return } // Quit the parent call if this is a connection to ourself equiv := func(k1, k2 []byte) bool { for idx := range k1 { if k1[idx] != k2[idx] { return false } } return true } if equiv(info.box[:], iface.core.boxPub[:]) { return } // testing if equiv(info.sig[:], iface.core.sigPub[:]) { return } // Check if we're authorized to connect to this key / IP if incoming && !iface.core.peers.isAllowedEncryptionPublicKey(&info.box) { // Allow unauthorized peers if they're link-local raddrStr, _, _ := net.SplitHostPort(sock.RemoteAddr().String()) raddr := net.ParseIP(raddrStr) if !raddr.IsLinkLocalUnicast() { return } } // Check if we already have a connection to this node, close and block if yes info.localAddr, _, _ = net.SplitHostPort(sock.LocalAddr().String()) info.remoteAddr, _, _ = net.SplitHostPort(sock.RemoteAddr().String()) iface.mutex.Lock() if blockChan, isIn := iface.conns[info]; isIn { iface.mutex.Unlock() sock.Close() <-blockChan return } blockChan := make(chan struct{}) iface.conns[info] = blockChan iface.mutex.Unlock() defer func() { iface.mutex.Lock() delete(iface.conns, info) iface.mutex.Unlock() close(blockChan) }() // Note that multiple connections to the same node are allowed // E.g. over different interfaces p := iface.core.peers.newPeer(&info.box, &info.sig, getSharedKey(myLinkPriv, &theirLinkPub)) p.linkOut = make(chan []byte, 1) in := func(bs []byte) { p.handlePacket(bs) } out := make(chan []byte, 32) // TODO? what size makes sense defer close(out) go func() { var shadow uint64 var stack [][]byte put := func(msg []byte) { stack = append(stack, msg) for len(stack) > 32 { util_putBytes(stack[0]) stack = stack[1:] shadow++ } } send := func(msg []byte) { msgLen := wire_encode_uint64(uint64(len(msg))) buf := net.Buffers{tcp_msg[:], msgLen, msg} buf.WriteTo(sock) util_putBytes(msg) } timerInterval := 4 * time.Second timer := time.NewTimer(timerInterval) defer timer.Stop() for { for ; shadow > 0; shadow-- { p.updateQueueSize(-1) } timer.Stop() select { case <-timer.C: default: } timer.Reset(timerInterval) select { case _ = <-timer.C: //iface.core.log.Println("DEBUG: sending keep-alive:", sock.RemoteAddr().String()) send(nil) // TCP keep-alive traffic case msg := <-p.linkOut: send(msg) case msg, ok := <-out: if !ok { return } put(msg) } for len(stack) > 0 { select { case msg := <-p.linkOut: send(msg) case msg, ok := <-out: if !ok { return } put(msg) default: msg := stack[len(stack)-1] stack = stack[:len(stack)-1] send(msg) p.updateQueueSize(-1) } } } }() p.out = func(msg []byte) { defer func() { recover() }() select { case out <- msg: p.updateQueueSize(1) default: util_putBytes(msg) } } p.close = func() { sock.Close() } setNoDelay(sock, true) go p.linkLoop() defer func() { // Put all of our cleanup here... p.core.peers.removePeer(p.port) }() them, _, _ := net.SplitHostPort(sock.RemoteAddr().String()) themNodeID := getNodeID(&info.box) themAddr := address_addrForNodeID(themNodeID) themAddrString := net.IP(themAddr[:]).String() themString := fmt.Sprintf("%s@%s", themAddrString, them) iface.core.log.Println("Connected:", themString) iface.reader(sock, in) // In this goroutine, because of defers iface.core.log.Println("Disconnected:", themString) return } func (iface *tcpInterface) reader(sock net.Conn, in func([]byte)) { bs := make([]byte, 2*tcp_msgSize) frag := bs[:0] for { timeout := time.Now().Add(6 * time.Second) sock.SetReadDeadline(timeout) n, err := sock.Read(bs[len(frag):]) if err != nil || n == 0 { // iface.core.log.Println(err) break } frag = bs[:len(frag)+n] for { msg, ok, err := tcp_chop_msg(&frag) if err != nil { // iface.core.log.Println(err) return } if !ok { break } // We didn't get the whole message yet newMsg := append(util_getBytes(), msg...) in(newMsg) util_yield() } frag = append(bs[:0], frag...) } } //////////////////////////////////////////////////////////////////////////////// // Magic bytes to check var tcp_key = [...]byte{'k', 'e', 'y', 's'} var tcp_msg = [...]byte{0xde, 0xad, 0xb1, 0x75} // "dead bits" func tcp_chop_keys(box *boxPubKey, sig *sigPubKey, link *boxPubKey, bs *[]byte) bool { // This one is pretty simple: we know how long the message should be // So don't call this with a message that's too short if len(*bs) < len(tcp_key)+2*len(*box)+len(*sig) { return false } for idx := range tcp_key { if (*bs)[idx] != tcp_key[idx] { return false } } (*bs) = (*bs)[len(tcp_key):] copy(box[:], *bs) (*bs) = (*bs)[len(box):] copy(sig[:], *bs) (*bs) = (*bs)[len(sig):] copy(link[:], *bs) (*bs) = (*bs)[len(sig):] return true } func tcp_chop_msg(bs *[]byte) ([]byte, bool, error) { // Returns msg, ok, err if len(*bs) < len(tcp_msg) { return nil, false, nil } for idx := range tcp_msg { if (*bs)[idx] != tcp_msg[idx] { return nil, false, errors.New("Bad message!") } } msgLen, msgLenLen := wire_decode_uint64((*bs)[len(tcp_msg):]) if msgLen > tcp_msgSize { return nil, false, errors.New("Oversized message!") } msgBegin := len(tcp_msg) + msgLenLen msgEnd := msgBegin + int(msgLen) if msgLenLen == 0 || len(*bs) < msgEnd { // We don't have the full message // Need to buffer this and wait for the rest to come in return nil, false, nil } msg := (*bs)[msgBegin:msgEnd] (*bs) = (*bs)[msgEnd:] return msg, true, nil }