5
0
mirror of https://github.com/cwinfo/yggdrasil-map synced 2024-11-22 19:50:27 +00:00
yggdrasil-map/web/graphPlotter.py

103 lines
2.7 KiB
Python
Raw Normal View History

import pygraphviz as pgv
import time
import json
import collections
import math
import networkx as nx
from networkx.algorithms import centrality
def position_nodes(nodes, edges):
2015-07-27 19:16:01 +00:00
G = pgv.AGraph(strict=True, directed=False, size='10!')
2015-07-27 19:16:01 +00:00
for n in nodes.values():
G.add_node(n.ip, label=n.label, version=n.version)
2015-07-27 19:16:01 +00:00
for e in edges:
G.add_edge(e.a.ip, e.b.ip, len=1.0)
2015-07-27 19:16:01 +00:00
G.layout(prog='neato', args='-Gepsilon=0.0001 -Gmaxiter=100000')
2015-07-27 19:16:01 +00:00
return G
def compute_betweenness(G):
ng = nx.Graph()
for start in G.iternodes():
others = G.neighbors(start)
for other in others:
ng.add_edge(start, other)
c = centrality.betweenness_centrality(ng)
for k, v in c.items():
c[k] = v
return c
def canonalize_ip(ip):
return ':'.join( i.rjust(4, '0') for i in ip.split(':') )
def load_db():
with open('nodedb/nodes') as f:
return dict([ (canonalize_ip(v[0]), v[1]) for v in [ l.split(None)[:2] for l in f.readlines() ] if len(v) > 1 ])
def get_graph_json(G):
2015-07-27 19:16:01 +00:00
max_neighbors = 1
for n in G.iternodes():
neighbors = len(G.neighbors(n))
if neighbors > max_neighbors:
max_neighbors = neighbors
print 'Max neighbors: %d' % max_neighbors
out_data = {
'created': int(time.time()),
'nodes': [],
'edges': []
}
centralities = compute_betweenness(G)
db = load_db()
2015-07-27 19:16:01 +00:00
for n in G.iternodes():
neighbor_ratio = len(G.neighbors(n)) / float(max_neighbors)
pos = n.attr['pos'].split(',', 1)
centrality = centralities.get(n.name, 0)
pcentrality = (centrality + 0.0001) * 500
size = (pcentrality ** 0.3 / 500) * 1000 + 1
name = db.get(n.name)
2015-07-27 19:16:01 +00:00
out_data['nodes'].append({
'id': n.name,
'label': name if name else n.attr['label'],
'name': name,
2015-07-27 19:16:01 +00:00
'version': n.attr['version'],
'x': float(pos[0]),
'y': float(pos[1]),
'color': _gradient_color(neighbor_ratio, [(100, 100, 100), (0, 0, 0)]),
'size': size,
'centrality': '%.4f' % centrality
2015-07-27 19:16:01 +00:00
})
for e in G.iteredges():
out_data['edges'].append({
'sourceID': e[0],
'targetID': e[1]
})
return json.dumps(out_data)
def _gradient_color(ratio, colors):
2015-07-27 19:16:01 +00:00
jump = 1.0 / (len(colors) - 1)
gap_num = int(ratio / (jump + 0.0000001))
2015-07-27 19:16:01 +00:00
a = colors[gap_num]
b = colors[gap_num + 1]
2015-07-27 19:16:01 +00:00
ratio = (ratio - gap_num * jump) * (len(colors) - 1)
2015-07-27 19:16:01 +00:00
r = a[0] + (b[0] - a[0]) * ratio
g = a[1] + (b[1] - a[1]) * ratio
b = a[2] + (b[2] - a[2]) * ratio
2015-07-27 19:16:01 +00:00
return '#%02x%02x%02x' % (r, g, b)