5
0
mirror of https://github.com/cwinfo/yggdrasil-go.git synced 2025-01-26 06:04:40 +00:00

Merge pull request #49 from Arceliar/misc-cleanup

Misc cleanup
This commit is contained in:
Arceliar 2018-03-05 23:04:34 -06:00 committed by GitHub
commit 7489704788
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
36 changed files with 6 additions and 3991 deletions

View File

@ -1,7 +1,7 @@
#!/bin/sh
# Get the branch name
BRANCH=$(git symbolic-ref --short HEAD 2>/dev/null)
# Get the branch name, removing any "/" characters from pull requests
BRANCH=$(git symbolic-ref --short HEAD | tr -d "/" 2>/dev/null)
# Check if the branch name is not master
if [ "$BRANCH" = "master" ]; then

View File

@ -1,23 +0,0 @@
#!/bin/sh
ip netns add peerns
ip link add veth0 type veth peer name veth1
ifconfig veth0 192.168.2.1/24 up
echo "1"
#tc qdisc add dev veth0 root tbf rate 8mbit burst 8192 latency 1ms
#tc qdisc add dev veth0 root netem delay 50ms 5ms distribution normal
echo "2"
ip link set veth1 netns peerns
ip netns exec peerns ifconfig veth1 192.168.2.2/24 up
echo "3"
#ip netns exec peerns tc qdisc add dev veth1 root tbf rate 8mbit burst 8192 latency 1ms
#ip netns exec peerns tc qdisc add dev veth1 root netem delay 50ms 5ms distribution normal
echo "4"
ip netns exec peerns ip addr list
#ip netns exec peerns ./run -useconf=conf2.json
ip netns exec peerns ip link set dev lo up
ip netns exec peerns ./run -autoconf -pprof
#GODEBUG=gctrace=1 ip netns exec peerns ./run -autoconf
#ip netns exec peerns ./run -useconf=conf2.json -cpuprofile=cpu2.prof -memprofile=mem2.prof
#ip netns delete peerns

View File

@ -1,29 +0,0 @@
#!/bin/sh
ip netns add peerns3
ip link add veth23 type veth peer name veth32
ip link set veth23 netns peerns
ip netns exec peerns ifconfig veth23 192.168.3.1/24 up
#ip netns exec peerns tc qdisc add dev veth23 root tbf rate 8mbit burst 8192 latency 1ms
#ip netns exec peerns tc qdisc add dev veth23 root netem delay 50ms 5ms distribution normal
ip link set veth32 netns peerns3
ip netns exec peerns3 ifconfig veth32 192.168.3.2/24 up
#ip netns exec peerns3 tc qdisc add dev veth32 root tbf rate 8mbit burst 8192 latency 1ms
#ip netns exec peerns3 tc qdisc add dev veth32 root netem delay 50ms 5ms distribution normal
ip netns exec peerns3 ip route add 192.168.2.0/24 via 192.168.3.1
#ip link add veth13 type veth peer name veth31
#ifconfig veth13 192.168.4.1/24 up
#ip netns exec peerns tc qdisc add dev veth23 root tbf rate 8mbit burst 8192 latency 1ms
#ip netns exec peerns tc qdisc add dev veth23 root netem delay 50ms 5ms distribution normal
#ip link set veth31 netns peerns3
#ip netns exec peerns3 ifconfig veth32 192.168.4.3/24 up
#ip netns exec peerns3 tc qdisc add dev veth32 root tbf rate 8mbit burst 8192 latency 1ms
#ip netns exec peerns3 tc qdisc add dev veth32 root netem delay 50ms 5ms distribution normal
#ip netns exec peerns3 ip route add 192.168.2.0/24 via 192.168.3.1
ip netns exec peerns3 ip addr list
#ip netns exec peerns3 ./run -useconf=conf3.json
ip netns exec peerns3 ifconfig lo up
ip netns exec peerns3 ./run -autoconf
#ip netns delete peerns3

View File

@ -1,28 +0,0 @@
#!/bin/sh
ip netns add peerns4
ip link add veth34 type veth peer name veth43
ip link set veth34 netns peerns3
ip netns exec peerns3 ifconfig veth34 192.168.4.3/24 up
#ip netns exec peerns tc qdisc add dev veth23 root tbf rate 8mbit burst 8192 latency 1ms
#ip netns exec peerns tc qdisc add dev veth23 root netem delay 50ms 5ms distribution normal
ip link set veth43 netns peerns4
ip netns exec peerns4 ifconfig veth43 192.168.4.4/24 up
#ip netns exec peerns3 tc qdisc add dev veth32 root tbf rate 8mbit burst 8192 latency 1ms
#ip netns exec peerns3 tc qdisc add dev veth32 root netem delay 50ms 5ms distribution normal
#ip netns exec peerns4 ip route add 192.168.3.0/24 via 192.168.4.3
#ip link add veth13 type veth peer name veth31
#ifconfig veth13 192.168.4.1/24 up
#ip netns exec peerns tc qdisc add dev veth23 root tbf rate 8mbit burst 8192 latency 1ms
#ip netns exec peerns tc qdisc add dev veth23 root netem delay 50ms 5ms distribution normal
#ip link set veth31 netns peerns3
#ip netns exec peerns3 ifconfig veth32 192.168.4.3/24 up
#ip netns exec peerns3 tc qdisc add dev veth32 root tbf rate 8mbit burst 8192 latency 1ms
#ip netns exec peerns3 tc qdisc add dev veth32 root netem delay 50ms 5ms distribution normal
#ip netns exec peerns3 ip route add 192.168.2.0/24 via 192.168.3.1
ip netns exec peerns4 ip addr list
#ip netns exec peerns3 ./run -useconf=conf3.json
ip netns exec peerns4 ./run -autoconf
#ip netns delete peerns3

View File

@ -1,60 +0,0 @@
import glob
inputDirPath = "out-skitter"
inputFilePaths = glob.glob(inputDirPath+"/*")
inputFilePaths.sort()
merged = dict()
stretches = []
total = 0
for inputFilePath in inputFilePaths:
print "Processing file {}".format(inputFilePath)
with open(inputFilePath, 'r') as f:
inData = f.readlines()
pathsChecked = 0.
avgStretch = 0.
for line in inData:
dat = line.rstrip('\n').split(' ')
eHops = int(dat[0])
nHops = int(dat[1])
count = int(dat[2])
if eHops not in merged: merged[eHops] = dict()
if nHops not in merged[eHops]: merged[eHops][nHops] = 0
merged[eHops][nHops] += count
total += count
pathsChecked += count
stretch = float(nHops)/eHops
avgStretch += stretch*count
finStretch = avgStretch / max(1, pathsChecked)
stretches.append(str(finStretch))
hopsUsed = 0.
hopsNeeded = 0.
avgStretch = 0.
results = []
for eHops in sorted(merged.keys()):
for nHops in sorted(merged[eHops].keys()):
count = merged[eHops][nHops]
result = "{} {} {}".format(eHops, nHops, count)
results.append(result)
hopsUsed += nHops*count
hopsNeeded += eHops*count
stretch = float(nHops)/eHops
avgStretch += stretch*count
print result
bandwidthUsage = hopsUsed/max(1, hopsNeeded)
avgStretch /= max(1, total)
with open("results.txt", "w") as f:
f.write('\n'.join(results))
with open("stretches.txt", "w") as f:
f.write('\n'.join(stretches))
print "Total files processed: {}".format(len(inputFilePaths))
print "Total paths found: {}".format(total)
print "Bandwidth usage: {}".format(bandwidthUsage)
print "Average stretch: {}".format(avgStretch)

View File

@ -59,3 +59,4 @@ print "Total paths found: {}".format(total)
print "Bandwidth usage: {}".format(bandwidthUsage)
print "Average stretch: {}".format(avgStretch)

View File

@ -1,197 +0,0 @@
package main
import "fmt"
import "bufio"
import "os"
import "strings"
import "strconv"
import "time"
import "runtime/pprof"
import "flag"
import "router"
////////////////////////////////////////////////////////////////////////////////
type Node struct {
nodeID router.NodeID
table router.Table
links []*Node
}
func (n *Node) init(nodeID router.NodeID) {
n.nodeID = nodeID
n.table.Init(nodeID)
n.links = append(n.links, n)
}
func linkNodes(m, n *Node) {
for _, o := range m.links {
if o.nodeID == n.nodeID {
// Don't allow duplicates
return
}
}
m.links = append(m.links, n)
n.links = append(n.links, m)
}
func makeStoreSquareGrid(sideLength int) map[router.NodeID]*Node {
store := make(map[router.NodeID]*Node)
nNodes := sideLength * sideLength
nodeIDs := make([]router.NodeID, 0, nNodes)
// TODO shuffle nodeIDs
for nodeID := 1; nodeID <= nNodes; nodeID++ {
nodeIDs = append(nodeIDs, router.NodeID(nodeID))
}
for _, nodeID := range nodeIDs {
node := &Node{}
node.init(nodeID)
store[nodeID] = node
}
for idx := 0; idx < nNodes; idx++ {
if (idx % sideLength) != 0 {
linkNodes(store[nodeIDs[idx]], store[nodeIDs[idx-1]])
}
if idx >= sideLength {
linkNodes(store[nodeIDs[idx]], store[nodeIDs[idx-sideLength]])
}
}
return store
}
func loadGraph(path string) map[router.NodeID]*Node {
f, err := os.Open(path)
if err != nil {
panic(err)
}
defer f.Close()
store := make(map[router.NodeID]*Node)
s := bufio.NewScanner(f)
for s.Scan() {
line := s.Text()
nodeIDstrs := strings.Split(line, " ")
nodeIDi0, _ := strconv.Atoi(nodeIDstrs[0])
nodeIDi1, _ := strconv.Atoi(nodeIDstrs[1])
nodeID0 := router.NodeID(nodeIDi0)
nodeID1 := router.NodeID(nodeIDi1)
if store[nodeID0] == nil {
node := &Node{}
node.init(nodeID0)
store[nodeID0] = node
}
if store[nodeID1] == nil {
node := &Node{}
node.init(nodeID1)
store[nodeID1] = node
}
linkNodes(store[nodeID0], store[nodeID1])
}
return store
}
////////////////////////////////////////////////////////////////////////////////
func idleUntilConverged(store map[router.NodeID]*Node) {
timeOfLastChange := 0
step := 0
// Idle untl the network has converged
for step-timeOfLastChange < 4*router.TIMEOUT {
step++
fmt.Println("Step:", step, "--", "last change:", timeOfLastChange)
for _, node := range store {
node.table.Tick()
for idx, link := range node.links[1:] {
msg := node.table.CreateMessage(router.Iface(idx))
for idx, fromNode := range link.links {
if fromNode == node {
//fmt.Println("Sending from node", node.nodeID, "to", link.nodeID)
link.table.HandleMessage(msg, router.Iface(idx))
break
}
}
}
}
//for _, node := range store {
// if node.table.DEBUG_isDirty() { timeOfLastChange = step }
//}
//time.Sleep(10*time.Millisecond)
}
}
func testPaths(store map[router.NodeID]*Node) {
nNodes := len(store)
nodeIDs := make([]router.NodeID, 0, nNodes)
for nodeID := range store {
nodeIDs = append(nodeIDs, nodeID)
}
lookups := 0
count := 0
start := time.Now()
for _, source := range store {
count++
fmt.Printf("Testing paths from node %d / %d (%d)\n", count, nNodes, source.nodeID)
for _, dest := range store {
//if source == dest { continue }
destLoc := dest.table.GetLocator()
temp := 0
for here := source; here != dest; {
temp++
if temp > 16 {
panic("Loop?")
}
next := here.links[here.table.Lookup(destLoc)]
if next == here {
//for idx, link := range here.links {
// fmt.Println("DUMP:", idx, link.nodeID)
//}
panic(fmt.Sprintln("Routing Loop:",
source.nodeID,
here.nodeID,
dest.nodeID))
}
//fmt.Println("DEBUG:", source.nodeID, here.nodeID, dest.nodeID)
here = next
lookups++
}
}
}
timed := time.Since(start)
fmt.Printf("%f lookups per second\n", float64(lookups)/timed.Seconds())
}
func dumpStore(store map[router.NodeID]*Node) {
for _, node := range store {
fmt.Println("DUMPSTORE:", node.nodeID, node.table.GetLocator())
node.table.DEBUG_dumpTable()
}
}
////////////////////////////////////////////////////////////////////////////////
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
func main() {
flag.Parse()
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
panic(fmt.Sprintf("could not create CPU profile: ", err))
}
if err := pprof.StartCPUProfile(f); err != nil {
panic(fmt.Sprintf("could not start CPU profile: ", err))
}
defer pprof.StopCPUProfile()
}
fmt.Println("Test")
store := makeStoreSquareGrid(4)
idleUntilConverged(store)
dumpStore(store)
testPaths(store)
//panic("DYING")
store = loadGraph("hype-2016-09-19.list")
idleUntilConverged(store)
dumpStore(store)
testPaths(store)
}

View File

@ -894,9 +894,7 @@ if __name__ == "__main__":
args = sys.argv
if len(args) == 2:
job_number = int(sys.argv[1])
#rootNodeASTest("fc00-2017-08-12.txt", "fc00", None, job_number)
#rootNodeASTest("skitter", "out-skitter", None, job_number)
rootNodeASTest("walk-1517414401.txt.map", "out-walk", None, job_number)
rootNodeASTest("fc00-2017-08-12.txt", "fc00", None, job_number)
else:
print "Usage: {} job_number".format(args[0])
print "job_number = which job set to run on this node (1-indexed)"

View File

@ -1,907 +0,0 @@
# Tree routing scheme (named Yggdrasil, after the world tree from Norse mythology)
# Steps:
# 1: Pick any node, here I'm using highest nodeID
# 2: Build spanning tree, each node stores path back to root
# Optionally with weights for each hop
# Ties broken by preferring a parent with higher degree
# 3: Distance metric: self->peer + (via tree) peer->dest
# 4: Perform (modified) greedy lookup via this metric for each direction (A->B and B->A)
# 5: Source-route traffic using the better of those two paths
# Note: This makes no attempt to simulate a dynamic network
# E.g. A node's peers cannot be disconnected
# TODO:
# Make better use of drop?
# In particular, we should be ignoring *all* recently dropped *paths* to the root
# To minimize route flapping
# Not really an issue in the sim, but probably needed for a real network
import array
import gc
import glob
import gzip
import heapq
import os
import random
import time
#############
# Constants #
#############
# Reminder of where link cost comes in
LINK_COST = 1
# Timeout before dropping something, in simulated seconds
TIMEOUT = 60
###########
# Classes #
###########
class PathInfo:
def __init__(self, nodeID):
self.nodeID = nodeID # e.g. IP
self.coords = [] # Position in tree
self.tstamp = 0 # Timestamp from sender, to keep track of old vs new info
self.degree = 0 # Number of peers the sender has, used to break ties
# The above should be signed
self.path = [nodeID] # Path to node (in path-vector route)
self.time = 0 # Time info was updated, to keep track of e.g. timeouts
self.treeID = nodeID # Hack, let tree use different ID than IP, used so we can dijkstra once and test many roots
def clone(self):
# Return a deep-enough copy of the path
clone = PathInfo(None)
clone.nodeID = self.nodeID
clone.coords = self.coords[:]
clone.tstamp = self.tstamp
clone.degree = self.degree
clone.path = self.path[:]
clone.time = self.time
clone.treeID = self.treeID
return clone
# End class PathInfo
class Node:
def __init__(self, nodeID):
self.info = PathInfo(nodeID) # Self NodeInfo
self.root = None # PathInfo to node at root of tree
self.drop = dict() # PathInfo to nodes from clus that have timed out
self.peers = dict() # PathInfo to peers
self.links = dict() # Links to peers (to pass messages)
self.msgs = [] # Said messages
self.table = dict() # Pre-computed lookup table of peer info
def tick(self):
# Do periodic maintenance stuff, including push updates
self.info.time += 1
if self.info.time > self.info.tstamp + TIMEOUT/4:
# Update timestamp at least once every 1/4 timeout period
# This should probably be randomized in a real implementation
self.info.tstamp = self.info.time
self.info.degree = len(self.peers)
#self.info.degree = 0# TODO decide if degree should be used
changed = False # Used to track when the network has converged
changed |= self.cleanRoot()
self.cleanDropped()
# Should probably send messages infrequently if there's nothing new to report
if self.info.tstamp == self.info.time:
msg = self.createMessage()
self.sendMessage(msg)
return changed
def cleanRoot(self):
changed = False
if self.root and self.info.time - self.root.time > TIMEOUT:
print "DEBUG: clean root,", self.root.path
self.drop[self.root.treeID] = self.root
self.root = None
changed = True
if not self.root or self.root.treeID < self.info.treeID:
# No need to drop someone who'se worse than us
self.info.coords = [self.info.nodeID]
self.root = self.info.clone()
changed = True
elif self.root.treeID == self.info.treeID:
self.root = self.info.clone()
return changed
def cleanDropped(self):
# May actually be a treeID... better to iterate over keys explicitly
nodeIDs = sorted(self.drop.keys())
for nodeID in nodeIDs:
node = self.drop[nodeID]
if self.info.time - node.time > 4*TIMEOUT:
del self.drop[nodeID]
return None
def createMessage(self):
# Message is just a tuple
# First element is the sender
# Second element is the root
# We will .clone() everything during the send operation
msg = (self.info, self.root)
return msg
def sendMessage(self, msg):
for link in self.links.values():
newMsg = (msg[0].clone(), msg[1].clone())
link.msgs.append(newMsg)
return None
def handleMessages(self):
changed = False
while self.msgs:
changed |= self.handleMessage(self.msgs.pop())
return changed
def handleMessage(self, msg):
changed = False
for node in msg:
# Update the path and timestamp for the sender and root info
node.path.append(self.info.nodeID)
node.time = self.info.time
# Update the sender's info in our list of peers
sender = msg[0]
self.peers[sender.nodeID] = sender
# Decide if we want to update the root
root = msg[1]
updateRoot = False
isSameParent = False
isBetterParent = False
if len(self.root.path) > 1 and len(root.path) > 1:
parent = self.peers[self.root.path[-2]]
if parent.nodeID == sender.nodeID: isSameParent = True
if sender.degree > parent.degree:
# This would also be where you check path uptime/reliability/whatever
# All else being equal, we prefer parents with high degree
# We are trusting peers to report degree correctly in this case
# So expect some performance reduction if your peers aren't trustworthy
# (Lies can increase average stretch by a few %)
isBetterParent = True
if self.info.nodeID in root.path[:-1]: pass # No loopy routes allowed
elif root.treeID in self.drop and self.drop[root.treeID].tstamp >= root.tstamp: pass
elif not self.root: updateRoot = True
elif self.root.treeID < root.treeID: updateRoot = True
elif self.root.treeID != root.treeID: pass
elif self.root.tstamp > root.tstamp: pass
elif len(root.path) < len(self.root.path): updateRoot = True
elif isBetterParent and len(root.path) == len(self.root.path): updateRoot = True
elif isSameParent and self.root.tstamp < root.tstamp: updateRoot = True
if updateRoot:
if not self.root or self.root.path != root.path: changed = True
self.root = root
self.info.coords = self.root.path
return changed
def lookup(self, dest):
# Note: Can loop in an unconverged network
# The person looking up the route is responsible for checking for loops
best = None
bestDist = 0
bestDeg = 0
for node in self.peers.itervalues():
# dist = distance to node + dist (on tree) from node to dest
dist = len(node.path)-1 + treeDist(node.coords, dest.coords)
deg = node.degree
if not best or dist < bestDist or (best == bestDist and deg > bestDeg):
best = node
bestDist = dist
bestDeg = deg
if best:
next = best.path[-2]
assert next in self.peers
return next
else:
# We failed to look something up
# TODO some way to signal this which doesn't crash
assert False
def initTable(self):
# Pre-computes a lookup table for destination coords
# Insert parent first so you prefer them as a next-hop
self.table.clear()
parent = self.info.nodeID
if len(self.info.coords) >= 2: parent = self.info.coords[-2]
for peer in self.peers.itervalues():
current = self.table
for coord in peer.coords:
if coord not in current: current[coord] = (peer.nodeID, dict())
old = current[coord]
next = old[1]
oldPeer = self.peers[old[0]]
oldDist = len(oldPeer.coords)
oldDeg = oldPeer.degree
newDist = len(peer.coords)
newDeg = peer.degree
# Prefer parent
# Else prefer short distance from root
# If equal distance, prefer high degree
if peer.nodeID == parent: current[coord] = (peer.nodeID, next)
elif newDist < oldDist: current[coord] = (peer.nodeID, next)
elif newDist == oldDist and newDeg > oldDeg: current[coord] = (peer.nodeID, next)
current = next
return None
def lookup_new(self, dest):
# Use pre-computed lookup table to look up next hop for dest coords
assert self.table
if len(self.info.coords) >= 2: parent = self.info.coords[-2]
else: parent = None
current = (parent, self.table)
c = None
for coord in dest.coords:
c = coord
if coord not in current[1]: break
current = current[1][coord]
next = current[0]
if c in self.peers: next = c
if next not in self.peers:
assert next == None
# You're the root of a different connected component
# You'd drop the packet in this case
# To make the path cache not die, need to return a valid next hop...
# Returning self for that reason
next = self.info.nodeID
return next
# End class Node
####################
# Helper Functions #
####################
def getIndexOfLCA(source, dest):
# Return index of last common ancestor in source/dest coords
# -1 if no common ancestor (e.g. different roots)
lcaIdx = -1
minLen = min(len(source), len(dest))
for idx in xrange(minLen):
if source[idx] == dest[idx]: lcaIdx = idx
else: break
return lcaIdx
def treePath(source, dest):
# Return path with source at head and dest at tail
lastMatch = getIndexOfLCA(source, dest)
path = dest[-1:lastMatch:-1] + source[lastMatch:]
assert path[0] == dest[-1]
assert path[-1] == source[-1]
return path
def treeDist(source, dest):
dist = len(source) + len(dest)
lcaIdx = getIndexOfLCA(source, dest)
dist -= 2*(lcaIdx+1)
return dist
def dijkstra(nodestore, startingNodeID):
# Idea to use heapq and basic implementation taken from stackexchange post
# http://codereview.stackexchange.com/questions/79025/dijkstras-algorithm-in-python
nodeIDs = sorted(nodestore.keys())
nNodes = len(nodeIDs)
idxs = dict()
for nodeIdx in xrange(nNodes):
nodeID = nodeIDs[nodeIdx]
idxs[nodeID] = nodeIdx
dists = array.array("H", [0]*nNodes)
queue = [(0, startingNodeID)]
while queue:
dist, nodeID = heapq.heappop(queue)
idx = idxs[nodeID]
if not dists[idx]: # Unvisited, otherwise we skip it
dists[idx] = dist
for peer in nodestore[nodeID].links:
if not dists[idxs[peer]]:
# Peer is also unvisited, so add to queue
heapq.heappush(queue, (dist+LINK_COST, peer))
return dists
def dijkstrall(nodestore):
# Idea to use heapq and basic implementation taken from stackexchange post
# http://codereview.stackexchange.com/questions/79025/dijkstras-algorithm-in-python
nodeIDs = sorted(nodestore.keys())
nNodes = len(nodeIDs)
idxs = dict()
for nodeIdx in xrange(nNodes):
nodeID = nodeIDs[nodeIdx]
idxs[nodeID] = nodeIdx
dists = array.array("H", [0]*nNodes*nNodes) # use GetCacheIndex(nNodes, start, end)
for sourceIdx in xrange(nNodes):
print "Finding shortest paths for node {} / {} ({})".format(sourceIdx+1, nNodes, nodeIDs[sourceIdx])
queue = [(0, sourceIdx)]
while queue:
dist, nodeIdx = heapq.heappop(queue)
distIdx = getCacheIndex(nNodes, sourceIdx, nodeIdx)
if not dists[distIdx]: # Unvisited, otherwise we skip it
dists[distIdx] = dist
for peer in nodestore[nodeIDs[nodeIdx]].links:
pIdx = idxs[peer]
pdIdx = getCacheIndex(nNodes, sourceIdx, pIdx)
if not dists[pdIdx]:
# Peer is also unvisited, so add to queue
heapq.heappush(queue, (dist+LINK_COST, pIdx))
return dists
def linkNodes(node1, node2):
node1.links[node2.info.nodeID] = node2
node2.links[node1.info.nodeID] = node1
############################
# Store topology functions #
############################
def makeStoreSquareGrid(sideLength, randomize=True):
# Simple grid in a sideLength*sideLength square
# Just used to validate that the code runs
store = dict()
nodeIDs = list(range(sideLength*sideLength))
if randomize: random.shuffle(nodeIDs)
for nodeID in nodeIDs:
store[nodeID] = Node(nodeID)
for index in xrange(len(nodeIDs)):
if (index % sideLength != 0): linkNodes(store[nodeIDs[index]], store[nodeIDs[index-1]])
if (index >= sideLength): linkNodes(store[nodeIDs[index]], store[nodeIDs[index-sideLength]])
print "Grid store created, size {}".format(len(store))
return store
def makeStoreASRelGraph(pathToGraph):
#Existing network graphs, in caida.org's asrel format (ASx|ASy|z per line, z denotes relationship type)
with open(pathToGraph, "r") as f:
inData = f.readlines()
store = dict()
for line in inData:
if line.strip()[0] == "#": continue # Skip comment lines
line = line.replace('|'," ")
nodes = map(int, line.split()[0:2])
if nodes[0] not in store: store[nodes[0]] = Node(nodes[0])
if nodes[1] not in store: store[nodes[1]] = Node(nodes[1])
linkNodes(store[nodes[0]], store[nodes[1]])
print "CAIDA AS-relation graph successfully imported, size {}".format(len(store))
return store
def makeStoreASRelGraphMaxDeg(pathToGraph, degIdx=0):
with open(pathToGraph, "r") as f:
inData = f.readlines()
store = dict()
nodeDeg = dict()
for line in inData:
if line.strip()[0] == "#": continue # Skip comment lines
line = line.replace('|'," ")
nodes = map(int, line.split()[0:2])
if nodes[0] not in nodeDeg: nodeDeg[nodes[0]] = 0
if nodes[1] not in nodeDeg: nodeDeg[nodes[1]] = 0
nodeDeg[nodes[0]] += 1
nodeDeg[nodes[1]] += 1
sortedNodes = sorted(nodeDeg.keys(), \
key=lambda x: (nodeDeg[x], x), \
reverse=True)
maxDegNodeID = sortedNodes[degIdx]
return makeStoreASRelGraphFixedRoot(pathToGraph, maxDegNodeID)
def makeStoreASRelGraphFixedRoot(pathToGraph, rootNodeID):
with open(pathToGraph, "r") as f:
inData = f.readlines()
store = dict()
for line in inData:
if line.strip()[0] == "#": continue # Skip comment lines
line = line.replace('|'," ")
nodes = map(int, line.split()[0:2])
if nodes[0] not in store:
store[nodes[0]] = Node(nodes[0])
if nodes[0] == rootNodeID: store[nodes[0]].info.treeID += 1000000000
if nodes[1] not in store:
store[nodes[1]] = Node(nodes[1])
if nodes[1] == rootNodeID: store[nodes[1]].info.treeID += 1000000000
linkNodes(store[nodes[0]], store[nodes[1]])
print "CAIDA AS-relation graph successfully imported, size {}".format(len(store))
return store
def makeStoreDimesEdges(pathToGraph, rootNodeID=None):
# Read from a DIMES csv-formatted graph from a gzip file
store = dict()
with gzip.open(pathToGraph, "r") as f:
inData = f.readlines()
size = len(inData)
index = 0
for edge in inData:
if not index % 1000:
pct = 100.0*index/size
print "Processing edge {}, {:.2f}%".format(index, pct)
index += 1
dat = edge.rstrip().split(',')
node1 = "N" + str(dat[0].strip())
node2 = "N" + str(dat[1].strip())
if '?' in node1 or '?' in node2: continue #Unknown node
if node1 == rootNodeID: node1 = "R" + str(dat[0].strip())
if node2 == rootNodeID: node2 = "R" + str(dat[1].strip())
if node1 not in store: store[node1] = Node(node1)
if node2 not in store: store[node2] = Node(node2)
if node1 != node2: linkNodes(store[node1], store[node2])
print "DIMES graph successfully imported, size {}".format(len(store))
return store
def makeStoreGeneratedGraph(pathToGraph, root=None):
with open(pathToGraph, "r") as f:
inData = f.readlines()
store = dict()
for line in inData:
if line.strip()[0] == "#": continue # Skip comment lines
nodes = map(int, line.strip().split(' ')[0:2])
node1 = nodes[0]
node2 = nodes[1]
if node1 == root: node1 += 1000000
if node2 == root: node2 += 1000000
if node1 not in store: store[node1] = Node(node1)
if node2 not in store: store[node2] = Node(node2)
linkNodes(store[node1], store[node2])
print "Generated graph successfully imported, size {}".format(len(store))
return store
############################################
# Functions used as parts of network tests #
############################################
def idleUntilConverged(store):
nodeIDs = sorted(store.keys())
timeOfLastChange = 0
step = 0
# Idle until the network has converged
while step - timeOfLastChange < 4*TIMEOUT:
step += 1
print "Step: {}, last change: {}".format(step, timeOfLastChange)
changed = False
for nodeID in nodeIDs:
# Update node status, send messages
changed |= store[nodeID].tick()
for nodeID in nodeIDs:
# Process messages
changed |= store[nodeID].handleMessages()
if changed: timeOfLastChange = step
initTables(store)
return store
def getCacheIndex(nodes, sourceIndex, destIndex):
return sourceIndex*nodes + destIndex
def initTables(store):
nodeIDs = sorted(store.keys())
nNodes = len(nodeIDs)
print "Initializing routing tables for {} nodes".format(nNodes)
for idx in xrange(nNodes):
nodeID = nodeIDs[idx]
store[nodeID].initTable()
print "Routing tables initialized"
return None
def getCache(store):
nodeIDs = sorted(store.keys())
nNodes = len(nodeIDs)
nodeIdxs = dict()
for nodeIdx in xrange(nNodes):
nodeIdxs[nodeIDs[nodeIdx]] = nodeIdx
cache = array.array("H", [0]*nNodes*nNodes)
for sourceIdx in xrange(nNodes):
sourceID = nodeIDs[sourceIdx]
print "Building fast lookup table for node {} / {} ({})".format(sourceIdx+1, nNodes, sourceID)
for destIdx in xrange(nNodes):
destID = nodeIDs[destIdx]
if sourceID == destID: nextHop = destID # lookup would fail
else: nextHop = store[sourceID].lookup(store[destID].info)
nextHopIdx = nodeIdxs[nextHop]
cache[getCacheIndex(nNodes, sourceIdx, destIdx)] = nextHopIdx
return cache
def testPaths(store, dists):
cache = getCache(store)
nodeIDs = sorted(store.keys())
nNodes = len(nodeIDs)
idxs = dict()
for nodeIdx in xrange(nNodes):
nodeID = nodeIDs[nodeIdx]
idxs[nodeID] = nodeIdx
results = dict()
for sourceIdx in xrange(nNodes):
sourceID = nodeIDs[sourceIdx]
print "Testing paths from node {} / {} ({})".format(sourceIdx+1, len(nodeIDs), sourceID)
#dists = dijkstra(store, sourceID)
for destIdx in xrange(nNodes):
destID = nodeIDs[destIdx]
if destID == sourceID: continue # Skip self
distIdx = getCacheIndex(nNodes, sourceIdx, destIdx)
eHops = dists[distIdx]
if not eHops: continue # The network is split, no path exists
hops = 0
for pair in ((sourceIdx, destIdx), (destIdx, sourceIdx)): # Either direction because source routing
nHops = 0
locIdx = pair[0]
dIdx = pair[1]
while locIdx != dIdx:
locIdx = cache[getCacheIndex(nNodes, locIdx, dIdx)]
nHops += 1
if not hops or nHops < hops: hops = nHops
if eHops not in results: results[eHops] = dict()
if hops not in results[eHops]: results[eHops][hops] = 0
results[eHops][hops] += 1
return results
def getAvgStretch(pathMatrix):
avgStretch = 0.
checked = 0.
for eHops in sorted(pathMatrix.keys()):
for nHops in sorted(pathMatrix[eHops].keys()):
count = pathMatrix[eHops][nHops]
stretch = float(nHops)/float(max(1, eHops))
avgStretch += stretch*count
checked += count
avgStretch /= max(1, checked)
return avgStretch
def getMaxStretch(pathMatrix):
maxStretch = 0.
for eHops in sorted(pathMatrix.keys()):
for nHops in sorted(pathMatrix[eHops].keys()):
stretch = float(nHops)/float(max(1, eHops))
maxStretch = max(maxStretch, stretch)
return maxStretch
def getCertSizes(store):
# Returns nCerts frequency distribution
# De-duplicates common certs (for shared prefixes in the path)
sizes = dict()
for node in store.values():
certs = set()
for peer in node.peers.values():
pCerts = set()
assert len(peer.path) == 2
assert peer.coords[-1] == peer.path[0]
hops = peer.coords + peer.path[1:]
for hopIdx in xrange(len(hops)-1):
send = hops[hopIdx]
if send == node.info.nodeID: continue # We created it, already have it
path = hops[0:hopIdx+2]
# Each cert is signed by the sender
# Includes information about the path from the sender to the next hop
# Next hop is at hopIdx+1, so the path to next hop is hops[0:hopIdx+2]
cert = "{}:{}".format(send, path)
certs.add(cert)
size = len(certs)
if size not in sizes: sizes[size] = 0
sizes[size] += 1
return sizes
def getMinLinkCertSizes(store):
# Returns nCerts frequency distribution
# De-duplicates common certs (for shared prefixes in the path)
# Based on the minimum number of certs that must be traded through a particular link
# Handled per link
sizes = dict()
for node in store.values():
peerCerts = dict()
for peer in node.peers.values():
pCerts = set()
assert len(peer.path) == 2
assert peer.coords[-1] == peer.path[0]
hops = peer.coords + peer.path[1:]
for hopIdx in xrange(len(hops)-1):
send = hops[hopIdx]
if send == node.info.nodeID: continue # We created it, already have it
path = hops[0:hopIdx+2]
# Each cert is signed by the sender
# Includes information about the path from the sender to the next hop
# Next hop is at hopIdx+1, so the path to next hop is hops[0:hopIdx+2]
cert = "{}:{}".format(send, path)
pCerts.add(cert)
peerCerts[peer.nodeID] = pCerts
for peer in peerCerts:
size = 0
pCerts = peerCerts[peer]
for cert in pCerts:
required = True
for p2 in peerCerts:
if p2 == peer: continue
p2Certs = peerCerts[p2]
if cert in p2Certs: required = False
if required: size += 1
if size not in sizes: sizes[size] = 0
sizes[size] += 1
return sizes
def getPathSizes(store):
# Returns frequency distribution of the total number of hops the routing table
# I.e. a node with 3 peers, each with 5 hop coord+path, would count as 3x5=15
sizes = dict()
for node in store.values():
size = 0
for peer in node.peers.values():
assert len(peer.path) == 2
assert peer.coords[-1] == peer.path[0]
peerSize = len(peer.coords) + len(peer.path) - 1 # double-counts peer, -1
size += peerSize
if size not in sizes: sizes[size] = 0
sizes[size] += 1
return sizes
def getPeerSizes(store):
# Returns frequency distribution of the number of peers each node has
sizes = dict()
for node in store.values():
nPeers = len(node.peers)
if nPeers not in sizes: sizes[nPeers] = 0
sizes[nPeers] += 1
return sizes
def getAvgSize(sizes):
sumSizes = 0
nNodes = 0
for size in sizes:
count = sizes[size]
sumSizes += size*count
nNodes += count
avgSize = float(sumSizes)/max(1, nNodes)
return avgSize
def getMaxSize(sizes):
return max(sizes.keys())
def getMinSize(sizes):
return min(sizes.keys())
def getResults(pathMatrix):
results = []
for eHops in sorted(pathMatrix.keys()):
for nHops in sorted(pathMatrix[eHops].keys()):
count = pathMatrix[eHops][nHops]
results.append("{} {} {}".format(eHops, nHops, count))
return '\n'.join(results)
####################################
# Functions to run different tests #
####################################
def runTest(store):
# Runs the usual set of tests on the store
# Does not save results, so only meant for quick tests
# To e.g. check the code works, maybe warm up the pypy jit
for node in store.values():
node.info.time = random.randint(0, TIMEOUT)
node.info.tstamp = TIMEOUT
print "Begin testing network"
dists = None
if not dists: dists = dijkstrall(store)
idleUntilConverged(store)
pathMatrix = testPaths(store, dists)
avgStretch = getAvgStretch(pathMatrix)
maxStretch = getMaxStretch(pathMatrix)
peers = getPeerSizes(store)
certs = getCertSizes(store)
paths = getPathSizes(store)
linkCerts = getMinLinkCertSizes(store)
avgPeerSize = getAvgSize(peers)
maxPeerSize = getMaxSize(peers)
avgCertSize = getAvgSize(certs)
maxCertSize = getMaxSize(certs)
avgPathSize = getAvgSize(paths)
maxPathSize = getMaxSize(paths)
avgLinkCert = getAvgSize(linkCerts)
maxLinkCert = getMaxSize(linkCerts)
totalCerts = sum(map(lambda x: x*certs[x], certs.keys()))
totalLinks = sum(map(lambda x: x*peers[x], peers.keys())) # one-way links
avgCertsPerLink = float(totalCerts)/max(1, totalLinks)
print "Finished testing network"
print "Avg / Max stretch: {} / {}".format(avgStretch, maxStretch)
print "Avg / Max nPeers size: {} / {}".format(avgPeerSize, maxPeerSize)
print "Avg / Max nCerts size: {} / {}".format(avgCertSize, maxCertSize)
print "Avg / Max total hops in any node's routing table: {} / {}".format(avgPathSize, maxPathSize)
print "Avg / Max lower bound cert requests per link (one-way): {} / {}".format(avgLinkCert, maxLinkCert)
print "Avg certs per link (one-way): {}".format(avgCertsPerLink)
return # End of function
def rootNodeASTest(path, outDir="output-treesim-AS", dists=None, proc = 1):
# Checks performance for every possible choice of root node
# Saves output for each root node to a separate file on disk
# path = input path to some caida.org formatted AS-relationship graph
if not os.path.exists(outDir): os.makedirs(outDir)
assert os.path.exists(outDir)
store = makeStoreASRelGraph(path)
nodes = sorted(store.keys())
for nodeIdx in xrange(len(nodes)):
if nodeIdx % proc != 0: continue # Work belongs to someone else
rootNodeID = nodes[nodeIdx]
outpath = outDir+"/{}".format(rootNodeID)
if os.path.exists(outpath):
print "Skipping {}, already processed".format(rootNodeID)
continue
store = makeStoreASRelGraphFixedRoot(path, rootNodeID)
for node in store.values():
node.info.time = random.randint(0, TIMEOUT)
node.info.tstamp = TIMEOUT
print "Beginning {}, size {}".format(nodeIdx, len(store))
if not dists: dists = dijkstrall(store)
idleUntilConverged(store)
pathMatrix = testPaths(store, dists)
avgStretch = getAvgStretch(pathMatrix)
maxStretch = getMaxStretch(pathMatrix)
results = getResults(pathMatrix)
with open(outpath, "w") as f:
f.write(results)
print "Finished test for root AS {} ({} / {})".format(rootNodeID, nodeIdx+1, len(store))
print "Avg / Max stretch: {} / {}".format(avgStretch, maxStretch)
#break # Stop after 1, because they can take forever
return # End of function
def timelineASTest():
# Meant to study the performance of the network as a function of network size
# Loops over a set of AS-relationship graphs
# Runs a test on each graph, selecting highest-degree node as the root
# Saves results for each graph to a separate file on disk
outDir = "output-treesim-timeline-AS"
if not os.path.exists(outDir): os.makedirs(outDir)
assert os.path.exists(outDir)
paths = sorted(glob.glob("asrel/datasets/*"))
for path in paths:
date = os.path.basename(path).split(".")[0]
outpath = outDir+"/{}".format(date)
if os.path.exists(outpath):
print "Skipping {}, already processed".format(date)
continue
store = makeStoreASRelGraphMaxDeg(path)
dists = None
for node in store.values():
node.info.time = random.randint(0, TIMEOUT)
node.info.tstamp = TIMEOUT
print "Beginning {}, size {}".format(date, len(store))
if not dists: dists = dijkstrall(store)
idleUntilConverged(store)
pathMatrix = testPaths(store, dists)
avgStretch = getAvgStretch(pathMatrix)
maxStretch = getMaxStretch(pathMatrix)
results = getResults(pathMatrix)
with open(outpath, "w") as f:
f.write(results)
print "Finished {} with {} nodes".format(date, len(store))
print "Avg / Max stretch: {} / {}".format(avgStretch, maxStretch)
#break # Stop after 1, because they can take forever
return # End of function
def timelineDimesTest():
# Meant to study the performance of the network as a function of network size
# Loops over a set of AS-relationship graphs
# Runs a test on each graph, selecting highest-degree node as the root
# Saves results for each graph to a separate file on disk
outDir = "output-treesim-timeline-dimes"
if not os.path.exists(outDir): os.makedirs(outDir)
assert os.path.exists(outDir)
# Input files are named ASEdgesX_Y where X = month (no leading 0), Y = year
paths = sorted(glob.glob("DIMES/ASEdges/*.gz"))
exists = set(glob.glob(outDir+"/*"))
for path in paths:
date = os.path.basename(path).split(".")[0]
outpath = outDir+"/{}".format(date)
if outpath in exists:
print "Skipping {}, already processed".format(date)
continue
store = makeStoreDimesEdges(path)
# Get the highest degree node and make it root
# Sorted by nodeID just to make it stable in the event of a tie
nodeIDs = sorted(store.keys())
bestRoot = ""
bestDeg = 0
for nodeID in nodeIDs:
node = store[nodeID]
if len(node.links) > bestDeg:
bestRoot = nodeID
bestDeg = len(node.links)
assert bestRoot
store = makeStoreDimesEdges(path, bestRoot)
rootID = "R" + bestRoot[1:]
assert rootID in store
# Don't forget to set random seed before setitng times
# To make results reproducible
nodeIDs = sorted(store.keys())
random.seed(12345)
for nodeID in nodeIDs:
node = store[nodeID]
node.info.time = random.randint(0, TIMEOUT)
node.info.tstamp = TIMEOUT
print "Beginning {}, size {}".format(date, len(store))
if not dists: dists = dijkstrall(store)
idleUntilConverged(store)
pathMatrix = testPaths(store, dists)
avgStretch = getAvgStretch(pathMatrix)
maxStretch = getMaxStretch(pathMatrix)
results = getResults(pathMatrix)
with open(outpath, "w") as f:
f.write(results)
print "Finished {} with {} nodes".format(date, len(store))
print "Avg / Max stretch: {} / {}".format(avgStretch, maxStretch)
break # Stop after 1, because they can take forever
return # End of function
def scalingTest(maxTests=None, inputDir="graphs"):
# Meant to study the performance of the network as a function of network size
# Loops over a set of nodes in a previously generated graph
# Runs a test on each graph, testing each node as the root
# if maxTests is set, tests only that number of roots (highest degree first)
# Saves results for each graph to a separate file on disk
outDir = "output-treesim-{}".format(inputDir)
if not os.path.exists(outDir): os.makedirs(outDir)
assert os.path.exists(outDir)
paths = sorted(glob.glob("{}/*".format(inputDir)))
exists = set(glob.glob(outDir+"/*"))
for path in paths:
gc.collect() # pypy waits for gc to close files
graph = os.path.basename(path).split(".")[0]
store = makeStoreGeneratedGraph(path)
# Get the highest degree node and make it root
# Sorted by nodeID just to make it stable in the event of a tie
nodeIDs = sorted(store.keys(), key=lambda x: len(store[x].links), reverse=True)
dists = None
if maxTests: nodeIDs = nodeIDs[:maxTests]
for nodeID in nodeIDs:
nodeIDStr = str(nodeID).zfill(len(str(len(store)-1)))
outpath = outDir+"/{}-{}".format(graph, nodeIDStr)
if outpath in exists:
print "Skipping {}-{}, already processed".format(graph, nodeIDStr)
continue
store = makeStoreGeneratedGraph(path, nodeID)
# Don't forget to set random seed before setting times
random.seed(12345) # To make results reproducible
nIDs = sorted(store.keys())
for nID in nIDs:
node = store[nID]
node.info.time = random.randint(0, TIMEOUT)
node.info.tstamp = TIMEOUT
print "Beginning {}, size {}".format(graph, len(store))
if not dists: dists = dijkstrall(store)
idleUntilConverged(store)
pathMatrix = testPaths(store, dists)
avgStretch = getAvgStretch(pathMatrix)
maxStretch = getMaxStretch(pathMatrix)
results = getResults(pathMatrix)
with open(outpath, "w") as f:
f.write(results)
print "Finished {} with {} nodes for root {}".format(graph, len(store), nodeID)
print "Avg / Max stretch: {} / {}".format(avgStretch, maxStretch)
return # End of function
##################
# Main Execution #
##################
if __name__ == "__main__":
if True: # Run a quick test
random.seed(12345) # DEBUG
store = makeStoreSquareGrid(4)
runTest(store) # Quick test
store = None
# Do some real work
#runTest(makeStoreDimesEdges("DIMES/ASEdges/ASEdges1_2007.csv.gz"))
#timelineDimesTest()
#rootNodeASTest("asrel/datasets/19980101.as-rel.txt")
#timelineASTest()
#rootNodeASTest("hype-2016-09-19.list", "output-treesim-hype")
#scalingTest(None, "graphs-20") # First argument 1 to only test 1 root per graph
#store = makeStoreGeneratedGraph("bgp_tables")
#store = makeStoreGeneratedGraph("skitter")
#store = makeStoreASRelGraphMaxDeg("hype-2016-09-19.list") #http://hia.cjdns.ca/watchlist/c/walk.peers.20160919
#store = makeStoreGeneratedGraph("fc00-2017-08-12.txt")
if store: runTest(store)
#rootNodeASTest("skitter", "output-treesim-skitter", None, 0, 1)
#scalingTest(1, "graphs-20") # First argument 1 to only test 1 root per graph
#scalingTest(1, "graphs-21") # First argument 1 to only test 1 root per graph
#scalingTest(1, "graphs-22") # First argument 1 to only test 1 root per graph
#scalingTest(1, "graphs-23") # First argument 1 to only test 1 root per graph
if not store:
import sys
args = sys.argv
if len(args) == 2:
job_number = int(sys.argv[1])
#rootNodeASTest("fc00-2017-08-12.txt", "fc00", None, job_number)
#rootNodeASTest("skitter", "out-skitter", None, job_number)
rootNodeASTest("walk-1517414401.txt.map", "out-walk", None, job_number)
else:
print "Usage: {} job_number".format(args[0])
print "job_number = which job set to run on this node (1-indexed)"

View File

@ -1,907 +0,0 @@
# Tree routing scheme (named Yggdrasil, after the world tree from Norse mythology)
# Steps:
# 1: Pick any node, here I'm using highest nodeID
# 2: Build spanning tree, each node stores path back to root
# Optionally with weights for each hop
# Ties broken by preferring a parent with higher degree
# 3: Distance metric: self->peer + (via tree) peer->dest
# 4: Perform (modified) greedy lookup via this metric for each direction (A->B and B->A)
# 5: Source-route traffic using the better of those two paths
# Note: This makes no attempt to simulate a dynamic network
# E.g. A node's peers cannot be disconnected
# TODO:
# Make better use of drop?
# In particular, we should be ignoring *all* recently dropped *paths* to the root
# To minimize route flapping
# Not really an issue in the sim, but probably needed for a real network
import array
import gc
import glob
import gzip
import heapq
import os
import random
import time
#############
# Constants #
#############
# Reminder of where link cost comes in
LINK_COST = 1
# Timeout before dropping something, in simulated seconds
TIMEOUT = 60
###########
# Classes #
###########
class PathInfo:
def __init__(self, nodeID):
self.nodeID = nodeID # e.g. IP
self.coords = [] # Position in tree
self.tstamp = 0 # Timestamp from sender, to keep track of old vs new info
self.degree = 0 # Number of peers the sender has, used to break ties
# The above should be signed
self.path = [nodeID] # Path to node (in path-vector route)
self.time = 0 # Time info was updated, to keep track of e.g. timeouts
self.treeID = nodeID # Hack, let tree use different ID than IP, used so we can dijkstra once and test many roots
def clone(self):
# Return a deep-enough copy of the path
clone = PathInfo(None)
clone.nodeID = self.nodeID
clone.coords = self.coords[:]
clone.tstamp = self.tstamp
clone.degree = self.degree
clone.path = self.path[:]
clone.time = self.time
clone.treeID = self.treeID
return clone
# End class PathInfo
class Node:
def __init__(self, nodeID):
self.info = PathInfo(nodeID) # Self NodeInfo
self.root = None # PathInfo to node at root of tree
self.drop = dict() # PathInfo to nodes from clus that have timed out
self.peers = dict() # PathInfo to peers
self.links = dict() # Links to peers (to pass messages)
self.msgs = [] # Said messages
self.table = dict() # Pre-computed lookup table of peer info
def tick(self):
# Do periodic maintenance stuff, including push updates
self.info.time += 1
if self.info.time > self.info.tstamp + TIMEOUT/4:
# Update timestamp at least once every 1/4 timeout period
# This should probably be randomized in a real implementation
self.info.tstamp = self.info.time
self.info.degree = len(self.peers)
self.info.degree = 0# TODO decide if degree should be used
changed = False # Used to track when the network has converged
changed |= self.cleanRoot()
self.cleanDropped()
# Should probably send messages infrequently if there's nothing new to report
if self.info.tstamp == self.info.time:
msg = self.createMessage()
self.sendMessage(msg)
return changed
def cleanRoot(self):
changed = False
if self.root and self.info.time - self.root.time > TIMEOUT:
print "DEBUG: clean root,", self.root.path
self.drop[self.root.treeID] = self.root
self.root = None
changed = True
if not self.root or self.root.treeID < self.info.treeID:
# No need to drop someone who'se worse than us
self.info.coords = [self.info.nodeID]
self.root = self.info.clone()
changed = True
elif self.root.treeID == self.info.treeID:
self.root = self.info.clone()
return changed
def cleanDropped(self):
# May actually be a treeID... better to iterate over keys explicitly
nodeIDs = sorted(self.drop.keys())
for nodeID in nodeIDs:
node = self.drop[nodeID]
if self.info.time - node.time > 4*TIMEOUT:
del self.drop[nodeID]
return None
def createMessage(self):
# Message is just a tuple
# First element is the sender
# Second element is the root
# We will .clone() everything during the send operation
msg = (self.info, self.root)
return msg
def sendMessage(self, msg):
for link in self.links.values():
newMsg = (msg[0].clone(), msg[1].clone())
link.msgs.append(newMsg)
return None
def handleMessages(self):
changed = False
while self.msgs:
changed |= self.handleMessage(self.msgs.pop())
return changed
def handleMessage(self, msg):
changed = False
for node in msg:
# Update the path and timestamp for the sender and root info
node.path.append(self.info.nodeID)
node.time = self.info.time
# Update the sender's info in our list of peers
sender = msg[0]
self.peers[sender.nodeID] = sender
# Decide if we want to update the root
root = msg[1]
updateRoot = False
isSameParent = False
isBetterParent = False
if len(self.root.path) > 1 and len(root.path) > 1:
parent = self.peers[self.root.path[-2]]
if parent.nodeID == sender.nodeID: isSameParent = True
if sender.degree > parent.degree:
# This would also be where you check path uptime/reliability/whatever
# All else being equal, we prefer parents with high degree
# We are trusting peers to report degree correctly in this case
# So expect some performance reduction if your peers aren't trustworthy
# (Lies can increase average stretch by a few %)
isBetterParent = True
if self.info.nodeID in root.path[:-1]: pass # No loopy routes allowed
elif root.treeID in self.drop and self.drop[root.treeID].tstamp >= root.tstamp: pass
elif not self.root: updateRoot = True
elif self.root.treeID < root.treeID: updateRoot = True
elif self.root.treeID != root.treeID: pass
elif self.root.tstamp > root.tstamp: pass
elif len(root.path) < len(self.root.path): updateRoot = True
elif isBetterParent and len(root.path) == len(self.root.path): updateRoot = True
elif isSameParent and self.root.tstamp < root.tstamp: updateRoot = True
if updateRoot:
if not self.root or self.root.path != root.path: changed = True
self.root = root
self.info.coords = self.root.path
return changed
def lookup(self, dest):
# Note: Can loop in an unconverged network
# The person looking up the route is responsible for checking for loops
best = None
bestDist = 0
bestDeg = 0
for node in self.peers.itervalues():
# dist = distance to node + dist (on tree) from node to dest
dist = len(node.path)-1 + treeDist(node.coords, dest.coords)
deg = node.degree
if not best or dist < bestDist or (best == bestDist and deg > bestDeg):
best = node
bestDist = dist
bestDeg = deg
if best:
next = best.path[-2]
assert next in self.peers
return next
else:
# We failed to look something up
# TODO some way to signal this which doesn't crash
assert False
def initTable(self):
# Pre-computes a lookup table for destination coords
# Insert parent first so you prefer them as a next-hop
self.table.clear()
parent = self.info.nodeID
if len(self.info.coords) >= 2: parent = self.info.coords[-2]
for peer in self.peers.itervalues():
current = self.table
for coord in peer.coords:
if coord not in current: current[coord] = (peer.nodeID, dict())
old = current[coord]
next = old[1]
oldPeer = self.peers[old[0]]
oldDist = len(oldPeer.coords)
oldDeg = oldPeer.degree
newDist = len(peer.coords)
newDeg = peer.degree
# Prefer parent
# Else prefer short distance from root
# If equal distance, prefer high degree
if peer.nodeID == parent: current[coord] = (peer.nodeID, next)
elif newDist < oldDist: current[coord] = (peer.nodeID, next)
elif newDist == oldDist and newDeg > oldDeg: current[coord] = (peer.nodeID, next)
current = next
return None
def lookup_new(self, dest):
# Use pre-computed lookup table to look up next hop for dest coords
assert self.table
if len(self.info.coords) >= 2: parent = self.info.coords[-2]
else: parent = None
current = (parent, self.table)
c = None
for coord in dest.coords:
c = coord
if coord not in current[1]: break
current = current[1][coord]
next = current[0]
if c in self.peers: next = c
if next not in self.peers:
assert next == None
# You're the root of a different connected component
# You'd drop the packet in this case
# To make the path cache not die, need to return a valid next hop...
# Returning self for that reason
next = self.info.nodeID
return next
# End class Node
####################
# Helper Functions #
####################
def getIndexOfLCA(source, dest):
# Return index of last common ancestor in source/dest coords
# -1 if no common ancestor (e.g. different roots)
lcaIdx = -1
minLen = min(len(source), len(dest))
for idx in xrange(minLen):
if source[idx] == dest[idx]: lcaIdx = idx
else: break
return lcaIdx
def treePath(source, dest):
# Return path with source at head and dest at tail
lastMatch = getIndexOfLCA(source, dest)
path = dest[-1:lastMatch:-1] + source[lastMatch:]
assert path[0] == dest[-1]
assert path[-1] == source[-1]
return path
def treeDist(source, dest):
dist = len(source) + len(dest)
lcaIdx = getIndexOfLCA(source, dest)
dist -= 2*(lcaIdx+1)
return dist
def dijkstra(nodestore, startingNodeID):
# Idea to use heapq and basic implementation taken from stackexchange post
# http://codereview.stackexchange.com/questions/79025/dijkstras-algorithm-in-python
nodeIDs = sorted(nodestore.keys())
nNodes = len(nodeIDs)
idxs = dict()
for nodeIdx in xrange(nNodes):
nodeID = nodeIDs[nodeIdx]
idxs[nodeID] = nodeIdx
dists = array.array("H", [0]*nNodes)
queue = [(0, startingNodeID)]
while queue:
dist, nodeID = heapq.heappop(queue)
idx = idxs[nodeID]
if not dists[idx]: # Unvisited, otherwise we skip it
dists[idx] = dist
for peer in nodestore[nodeID].links:
if not dists[idxs[peer]]:
# Peer is also unvisited, so add to queue
heapq.heappush(queue, (dist+LINK_COST, peer))
return dists
def dijkstrall(nodestore):
# Idea to use heapq and basic implementation taken from stackexchange post
# http://codereview.stackexchange.com/questions/79025/dijkstras-algorithm-in-python
nodeIDs = sorted(nodestore.keys())
nNodes = len(nodeIDs)
idxs = dict()
for nodeIdx in xrange(nNodes):
nodeID = nodeIDs[nodeIdx]
idxs[nodeID] = nodeIdx
dists = array.array("H", [0]*nNodes*nNodes) # use GetCacheIndex(nNodes, start, end)
for sourceIdx in xrange(nNodes):
print "Finding shortest paths for node {} / {} ({})".format(sourceIdx+1, nNodes, nodeIDs[sourceIdx])
queue = [(0, sourceIdx)]
while queue:
dist, nodeIdx = heapq.heappop(queue)
distIdx = getCacheIndex(nNodes, sourceIdx, nodeIdx)
if not dists[distIdx]: # Unvisited, otherwise we skip it
dists[distIdx] = dist
for peer in nodestore[nodeIDs[nodeIdx]].links:
pIdx = idxs[peer]
pdIdx = getCacheIndex(nNodes, sourceIdx, pIdx)
if not dists[pdIdx]:
# Peer is also unvisited, so add to queue
heapq.heappush(queue, (dist+LINK_COST, pIdx))
return dists
def linkNodes(node1, node2):
node1.links[node2.info.nodeID] = node2
node2.links[node1.info.nodeID] = node1
############################
# Store topology functions #
############################
def makeStoreSquareGrid(sideLength, randomize=True):
# Simple grid in a sideLength*sideLength square
# Just used to validate that the code runs
store = dict()
nodeIDs = list(range(sideLength*sideLength))
if randomize: random.shuffle(nodeIDs)
for nodeID in nodeIDs:
store[nodeID] = Node(nodeID)
for index in xrange(len(nodeIDs)):
if (index % sideLength != 0): linkNodes(store[nodeIDs[index]], store[nodeIDs[index-1]])
if (index >= sideLength): linkNodes(store[nodeIDs[index]], store[nodeIDs[index-sideLength]])
print "Grid store created, size {}".format(len(store))
return store
def makeStoreASRelGraph(pathToGraph):
#Existing network graphs, in caida.org's asrel format (ASx|ASy|z per line, z denotes relationship type)
with open(pathToGraph, "r") as f:
inData = f.readlines()
store = dict()
for line in inData:
if line.strip()[0] == "#": continue # Skip comment lines
line = line.replace('|'," ")
nodes = map(int, line.split()[0:2])
if nodes[0] not in store: store[nodes[0]] = Node(nodes[0])
if nodes[1] not in store: store[nodes[1]] = Node(nodes[1])
linkNodes(store[nodes[0]], store[nodes[1]])
print "CAIDA AS-relation graph successfully imported, size {}".format(len(store))
return store
def makeStoreASRelGraphMaxDeg(pathToGraph, degIdx=0):
with open(pathToGraph, "r") as f:
inData = f.readlines()
store = dict()
nodeDeg = dict()
for line in inData:
if line.strip()[0] == "#": continue # Skip comment lines
line = line.replace('|'," ")
nodes = map(int, line.split()[0:2])
if nodes[0] not in nodeDeg: nodeDeg[nodes[0]] = 0
if nodes[1] not in nodeDeg: nodeDeg[nodes[1]] = 0
nodeDeg[nodes[0]] += 1
nodeDeg[nodes[1]] += 1
sortedNodes = sorted(nodeDeg.keys(), \
key=lambda x: (nodeDeg[x], x), \
reverse=True)
maxDegNodeID = sortedNodes[degIdx]
return makeStoreASRelGraphFixedRoot(pathToGraph, maxDegNodeID)
def makeStoreASRelGraphFixedRoot(pathToGraph, rootNodeID):
with open(pathToGraph, "r") as f:
inData = f.readlines()
store = dict()
for line in inData:
if line.strip()[0] == "#": continue # Skip comment lines
line = line.replace('|'," ")
nodes = map(int, line.split()[0:2])
if nodes[0] not in store:
store[nodes[0]] = Node(nodes[0])
if nodes[0] == rootNodeID: store[nodes[0]].info.treeID += 1000000000
if nodes[1] not in store:
store[nodes[1]] = Node(nodes[1])
if nodes[1] == rootNodeID: store[nodes[1]].info.treeID += 1000000000
linkNodes(store[nodes[0]], store[nodes[1]])
print "CAIDA AS-relation graph successfully imported, size {}".format(len(store))
return store
def makeStoreDimesEdges(pathToGraph, rootNodeID=None):
# Read from a DIMES csv-formatted graph from a gzip file
store = dict()
with gzip.open(pathToGraph, "r") as f:
inData = f.readlines()
size = len(inData)
index = 0
for edge in inData:
if not index % 1000:
pct = 100.0*index/size
print "Processing edge {}, {:.2f}%".format(index, pct)
index += 1
dat = edge.rstrip().split(',')
node1 = "N" + str(dat[0].strip())
node2 = "N" + str(dat[1].strip())
if '?' in node1 or '?' in node2: continue #Unknown node
if node1 == rootNodeID: node1 = "R" + str(dat[0].strip())
if node2 == rootNodeID: node2 = "R" + str(dat[1].strip())
if node1 not in store: store[node1] = Node(node1)
if node2 not in store: store[node2] = Node(node2)
if node1 != node2: linkNodes(store[node1], store[node2])
print "DIMES graph successfully imported, size {}".format(len(store))
return store
def makeStoreGeneratedGraph(pathToGraph, root=None):
with open(pathToGraph, "r") as f:
inData = f.readlines()
store = dict()
for line in inData:
if line.strip()[0] == "#": continue # Skip comment lines
nodes = map(int, line.strip().split(' ')[0:2])
node1 = nodes[0]
node2 = nodes[1]
if node1 == root: node1 += 1000000
if node2 == root: node2 += 1000000
if node1 not in store: store[node1] = Node(node1)
if node2 not in store: store[node2] = Node(node2)
linkNodes(store[node1], store[node2])
print "Generated graph successfully imported, size {}".format(len(store))
return store
############################################
# Functions used as parts of network tests #
############################################
def idleUntilConverged(store):
nodeIDs = sorted(store.keys())
timeOfLastChange = 0
step = 0
# Idle until the network has converged
while step - timeOfLastChange < 4*TIMEOUT:
step += 1
print "Step: {}, last change: {}".format(step, timeOfLastChange)
changed = False
for nodeID in nodeIDs:
# Update node status, send messages
changed |= store[nodeID].tick()
for nodeID in nodeIDs:
# Process messages
changed |= store[nodeID].handleMessages()
if changed: timeOfLastChange = step
initTables(store)
return store
def getCacheIndex(nodes, sourceIndex, destIndex):
return sourceIndex*nodes + destIndex
def initTables(store):
nodeIDs = sorted(store.keys())
nNodes = len(nodeIDs)
print "Initializing routing tables for {} nodes".format(nNodes)
for idx in xrange(nNodes):
nodeID = nodeIDs[idx]
store[nodeID].initTable()
print "Routing tables initialized"
return None
def getCache(store):
nodeIDs = sorted(store.keys())
nNodes = len(nodeIDs)
nodeIdxs = dict()
for nodeIdx in xrange(nNodes):
nodeIdxs[nodeIDs[nodeIdx]] = nodeIdx
cache = array.array("H", [0]*nNodes*nNodes)
for sourceIdx in xrange(nNodes):
sourceID = nodeIDs[sourceIdx]
print "Building fast lookup table for node {} / {} ({})".format(sourceIdx+1, nNodes, sourceID)
for destIdx in xrange(nNodes):
destID = nodeIDs[destIdx]
if sourceID == destID: nextHop = destID # lookup would fail
else: nextHop = store[sourceID].lookup(store[destID].info)
nextHopIdx = nodeIdxs[nextHop]
cache[getCacheIndex(nNodes, sourceIdx, destIdx)] = nextHopIdx
return cache
def testPaths(store, dists):
cache = getCache(store)
nodeIDs = sorted(store.keys())
nNodes = len(nodeIDs)
idxs = dict()
for nodeIdx in xrange(nNodes):
nodeID = nodeIDs[nodeIdx]
idxs[nodeID] = nodeIdx
results = dict()
for sourceIdx in xrange(nNodes):
sourceID = nodeIDs[sourceIdx]
print "Testing paths from node {} / {} ({})".format(sourceIdx+1, len(nodeIDs), sourceID)
#dists = dijkstra(store, sourceID)
for destIdx in xrange(nNodes):
destID = nodeIDs[destIdx]
if destID == sourceID: continue # Skip self
distIdx = getCacheIndex(nNodes, sourceIdx, destIdx)
eHops = dists[distIdx]
if not eHops: continue # The network is split, no path exists
hops = 0
for pair in ((sourceIdx, destIdx), (destIdx, sourceIdx)): # Either direction because source routing
nHops = 0
locIdx = pair[0]
dIdx = pair[1]
while locIdx != dIdx:
locIdx = cache[getCacheIndex(nNodes, locIdx, dIdx)]
nHops += 1
if not hops or nHops < hops: hops = nHops
if eHops not in results: results[eHops] = dict()
if hops not in results[eHops]: results[eHops][hops] = 0
results[eHops][hops] += 1
return results
def getAvgStretch(pathMatrix):
avgStretch = 0.
checked = 0.
for eHops in sorted(pathMatrix.keys()):
for nHops in sorted(pathMatrix[eHops].keys()):
count = pathMatrix[eHops][nHops]
stretch = float(nHops)/float(max(1, eHops))
avgStretch += stretch*count
checked += count
avgStretch /= max(1, checked)
return avgStretch
def getMaxStretch(pathMatrix):
maxStretch = 0.
for eHops in sorted(pathMatrix.keys()):
for nHops in sorted(pathMatrix[eHops].keys()):
stretch = float(nHops)/float(max(1, eHops))
maxStretch = max(maxStretch, stretch)
return maxStretch
def getCertSizes(store):
# Returns nCerts frequency distribution
# De-duplicates common certs (for shared prefixes in the path)
sizes = dict()
for node in store.values():
certs = set()
for peer in node.peers.values():
pCerts = set()
assert len(peer.path) == 2
assert peer.coords[-1] == peer.path[0]
hops = peer.coords + peer.path[1:]
for hopIdx in xrange(len(hops)-1):
send = hops[hopIdx]
if send == node.info.nodeID: continue # We created it, already have it
path = hops[0:hopIdx+2]
# Each cert is signed by the sender
# Includes information about the path from the sender to the next hop
# Next hop is at hopIdx+1, so the path to next hop is hops[0:hopIdx+2]
cert = "{}:{}".format(send, path)
certs.add(cert)
size = len(certs)
if size not in sizes: sizes[size] = 0
sizes[size] += 1
return sizes
def getMinLinkCertSizes(store):
# Returns nCerts frequency distribution
# De-duplicates common certs (for shared prefixes in the path)
# Based on the minimum number of certs that must be traded through a particular link
# Handled per link
sizes = dict()
for node in store.values():
peerCerts = dict()
for peer in node.peers.values():
pCerts = set()
assert len(peer.path) == 2
assert peer.coords[-1] == peer.path[0]
hops = peer.coords + peer.path[1:]
for hopIdx in xrange(len(hops)-1):
send = hops[hopIdx]
if send == node.info.nodeID: continue # We created it, already have it
path = hops[0:hopIdx+2]
# Each cert is signed by the sender
# Includes information about the path from the sender to the next hop
# Next hop is at hopIdx+1, so the path to next hop is hops[0:hopIdx+2]
cert = "{}:{}".format(send, path)
pCerts.add(cert)
peerCerts[peer.nodeID] = pCerts
for peer in peerCerts:
size = 0
pCerts = peerCerts[peer]
for cert in pCerts:
required = True
for p2 in peerCerts:
if p2 == peer: continue
p2Certs = peerCerts[p2]
if cert in p2Certs: required = False
if required: size += 1
if size not in sizes: sizes[size] = 0
sizes[size] += 1
return sizes
def getPathSizes(store):
# Returns frequency distribution of the total number of hops the routing table
# I.e. a node with 3 peers, each with 5 hop coord+path, would count as 3x5=15
sizes = dict()
for node in store.values():
size = 0
for peer in node.peers.values():
assert len(peer.path) == 2
assert peer.coords[-1] == peer.path[0]
peerSize = len(peer.coords) + len(peer.path) - 1 # double-counts peer, -1
size += peerSize
if size not in sizes: sizes[size] = 0
sizes[size] += 1
return sizes
def getPeerSizes(store):
# Returns frequency distribution of the number of peers each node has
sizes = dict()
for node in store.values():
nPeers = len(node.peers)
if nPeers not in sizes: sizes[nPeers] = 0
sizes[nPeers] += 1
return sizes
def getAvgSize(sizes):
sumSizes = 0
nNodes = 0
for size in sizes:
count = sizes[size]
sumSizes += size*count
nNodes += count
avgSize = float(sumSizes)/max(1, nNodes)
return avgSize
def getMaxSize(sizes):
return max(sizes.keys())
def getMinSize(sizes):
return min(sizes.keys())
def getResults(pathMatrix):
results = []
for eHops in sorted(pathMatrix.keys()):
for nHops in sorted(pathMatrix[eHops].keys()):
count = pathMatrix[eHops][nHops]
results.append("{} {} {}".format(eHops, nHops, count))
return '\n'.join(results)
####################################
# Functions to run different tests #
####################################
def runTest(store):
# Runs the usual set of tests on the store
# Does not save results, so only meant for quick tests
# To e.g. check the code works, maybe warm up the pypy jit
for node in store.values():
node.info.time = random.randint(0, TIMEOUT)
node.info.tstamp = TIMEOUT
print "Begin testing network"
dists = None
if not dists: dists = dijkstrall(store)
idleUntilConverged(store)
pathMatrix = testPaths(store, dists)
avgStretch = getAvgStretch(pathMatrix)
maxStretch = getMaxStretch(pathMatrix)
peers = getPeerSizes(store)
certs = getCertSizes(store)
paths = getPathSizes(store)
linkCerts = getMinLinkCertSizes(store)
avgPeerSize = getAvgSize(peers)
maxPeerSize = getMaxSize(peers)
avgCertSize = getAvgSize(certs)
maxCertSize = getMaxSize(certs)
avgPathSize = getAvgSize(paths)
maxPathSize = getMaxSize(paths)
avgLinkCert = getAvgSize(linkCerts)
maxLinkCert = getMaxSize(linkCerts)
totalCerts = sum(map(lambda x: x*certs[x], certs.keys()))
totalLinks = sum(map(lambda x: x*peers[x], peers.keys())) # one-way links
avgCertsPerLink = float(totalCerts)/max(1, totalLinks)
print "Finished testing network"
print "Avg / Max stretch: {} / {}".format(avgStretch, maxStretch)
print "Avg / Max nPeers size: {} / {}".format(avgPeerSize, maxPeerSize)
print "Avg / Max nCerts size: {} / {}".format(avgCertSize, maxCertSize)
print "Avg / Max total hops in any node's routing table: {} / {}".format(avgPathSize, maxPathSize)
print "Avg / Max lower bound cert requests per link (one-way): {} / {}".format(avgLinkCert, maxLinkCert)
print "Avg certs per link (one-way): {}".format(avgCertsPerLink)
return # End of function
def rootNodeASTest(path, outDir="output-treesim-AS", dists=None, proc = 1):
# Checks performance for every possible choice of root node
# Saves output for each root node to a separate file on disk
# path = input path to some caida.org formatted AS-relationship graph
if not os.path.exists(outDir): os.makedirs(outDir)
assert os.path.exists(outDir)
store = makeStoreASRelGraph(path)
nodes = sorted(store.keys())
for nodeIdx in xrange(len(nodes)):
if nodeIdx % proc != 0: continue # Work belongs to someone else
rootNodeID = nodes[nodeIdx]
outpath = outDir+"/{}".format(rootNodeID)
if os.path.exists(outpath):
print "Skipping {}, already processed".format(rootNodeID)
continue
store = makeStoreASRelGraphFixedRoot(path, rootNodeID)
for node in store.values():
node.info.time = random.randint(0, TIMEOUT)
node.info.tstamp = TIMEOUT
print "Beginning {}, size {}".format(nodeIdx, len(store))
if not dists: dists = dijkstrall(store)
idleUntilConverged(store)
pathMatrix = testPaths(store, dists)
avgStretch = getAvgStretch(pathMatrix)
maxStretch = getMaxStretch(pathMatrix)
results = getResults(pathMatrix)
with open(outpath, "w") as f:
f.write(results)
print "Finished test for root AS {} ({} / {})".format(rootNodeID, nodeIdx+1, len(store))
print "Avg / Max stretch: {} / {}".format(avgStretch, maxStretch)
#break # Stop after 1, because they can take forever
return # End of function
def timelineASTest():
# Meant to study the performance of the network as a function of network size
# Loops over a set of AS-relationship graphs
# Runs a test on each graph, selecting highest-degree node as the root
# Saves results for each graph to a separate file on disk
outDir = "output-treesim-timeline-AS"
if not os.path.exists(outDir): os.makedirs(outDir)
assert os.path.exists(outDir)
paths = sorted(glob.glob("asrel/datasets/*"))
for path in paths:
date = os.path.basename(path).split(".")[0]
outpath = outDir+"/{}".format(date)
if os.path.exists(outpath):
print "Skipping {}, already processed".format(date)
continue
store = makeStoreASRelGraphMaxDeg(path)
dists = None
for node in store.values():
node.info.time = random.randint(0, TIMEOUT)
node.info.tstamp = TIMEOUT
print "Beginning {}, size {}".format(date, len(store))
if not dists: dists = dijkstrall(store)
idleUntilConverged(store)
pathMatrix = testPaths(store, dists)
avgStretch = getAvgStretch(pathMatrix)
maxStretch = getMaxStretch(pathMatrix)
results = getResults(pathMatrix)
with open(outpath, "w") as f:
f.write(results)
print "Finished {} with {} nodes".format(date, len(store))
print "Avg / Max stretch: {} / {}".format(avgStretch, maxStretch)
#break # Stop after 1, because they can take forever
return # End of function
def timelineDimesTest():
# Meant to study the performance of the network as a function of network size
# Loops over a set of AS-relationship graphs
# Runs a test on each graph, selecting highest-degree node as the root
# Saves results for each graph to a separate file on disk
outDir = "output-treesim-timeline-dimes"
if not os.path.exists(outDir): os.makedirs(outDir)
assert os.path.exists(outDir)
# Input files are named ASEdgesX_Y where X = month (no leading 0), Y = year
paths = sorted(glob.glob("DIMES/ASEdges/*.gz"))
exists = set(glob.glob(outDir+"/*"))
for path in paths:
date = os.path.basename(path).split(".")[0]
outpath = outDir+"/{}".format(date)
if outpath in exists:
print "Skipping {}, already processed".format(date)
continue
store = makeStoreDimesEdges(path)
# Get the highest degree node and make it root
# Sorted by nodeID just to make it stable in the event of a tie
nodeIDs = sorted(store.keys())
bestRoot = ""
bestDeg = 0
for nodeID in nodeIDs:
node = store[nodeID]
if len(node.links) > bestDeg:
bestRoot = nodeID
bestDeg = len(node.links)
assert bestRoot
store = makeStoreDimesEdges(path, bestRoot)
rootID = "R" + bestRoot[1:]
assert rootID in store
# Don't forget to set random seed before setitng times
# To make results reproducible
nodeIDs = sorted(store.keys())
random.seed(12345)
for nodeID in nodeIDs:
node = store[nodeID]
node.info.time = random.randint(0, TIMEOUT)
node.info.tstamp = TIMEOUT
print "Beginning {}, size {}".format(date, len(store))
if not dists: dists = dijkstrall(store)
idleUntilConverged(store)
pathMatrix = testPaths(store, dists)
avgStretch = getAvgStretch(pathMatrix)
maxStretch = getMaxStretch(pathMatrix)
results = getResults(pathMatrix)
with open(outpath, "w") as f:
f.write(results)
print "Finished {} with {} nodes".format(date, len(store))
print "Avg / Max stretch: {} / {}".format(avgStretch, maxStretch)
break # Stop after 1, because they can take forever
return # End of function
def scalingTest(maxTests=None, inputDir="graphs"):
# Meant to study the performance of the network as a function of network size
# Loops over a set of nodes in a previously generated graph
# Runs a test on each graph, testing each node as the root
# if maxTests is set, tests only that number of roots (highest degree first)
# Saves results for each graph to a separate file on disk
outDir = "output-treesim-{}".format(inputDir)
if not os.path.exists(outDir): os.makedirs(outDir)
assert os.path.exists(outDir)
paths = sorted(glob.glob("{}/*".format(inputDir)))
exists = set(glob.glob(outDir+"/*"))
for path in paths:
gc.collect() # pypy waits for gc to close files
graph = os.path.basename(path).split(".")[0]
store = makeStoreGeneratedGraph(path)
# Get the highest degree node and make it root
# Sorted by nodeID just to make it stable in the event of a tie
nodeIDs = sorted(store.keys(), key=lambda x: len(store[x].links), reverse=True)
dists = None
if maxTests: nodeIDs = nodeIDs[:maxTests]
for nodeID in nodeIDs:
nodeIDStr = str(nodeID).zfill(len(str(len(store)-1)))
outpath = outDir+"/{}-{}".format(graph, nodeIDStr)
if outpath in exists:
print "Skipping {}-{}, already processed".format(graph, nodeIDStr)
continue
store = makeStoreGeneratedGraph(path, nodeID)
# Don't forget to set random seed before setting times
random.seed(12345) # To make results reproducible
nIDs = sorted(store.keys())
for nID in nIDs:
node = store[nID]
node.info.time = random.randint(0, TIMEOUT)
node.info.tstamp = TIMEOUT
print "Beginning {}, size {}".format(graph, len(store))
if not dists: dists = dijkstrall(store)
idleUntilConverged(store)
pathMatrix = testPaths(store, dists)
avgStretch = getAvgStretch(pathMatrix)
maxStretch = getMaxStretch(pathMatrix)
results = getResults(pathMatrix)
with open(outpath, "w") as f:
f.write(results)
print "Finished {} with {} nodes for root {}".format(graph, len(store), nodeID)
print "Avg / Max stretch: {} / {}".format(avgStretch, maxStretch)
return # End of function
##################
# Main Execution #
##################
if __name__ == "__main__":
if True: # Run a quick test
random.seed(12345) # DEBUG
store = makeStoreSquareGrid(4)
runTest(store) # Quick test
store = None
# Do some real work
#runTest(makeStoreDimesEdges("DIMES/ASEdges/ASEdges1_2007.csv.gz"))
#timelineDimesTest()
#rootNodeASTest("asrel/datasets/19980101.as-rel.txt")
#timelineASTest()
#rootNodeASTest("hype-2016-09-19.list", "output-treesim-hype")
#scalingTest(None, "graphs-20") # First argument 1 to only test 1 root per graph
#store = makeStoreGeneratedGraph("bgp_tables")
#store = makeStoreGeneratedGraph("skitter")
#store = makeStoreASRelGraphMaxDeg("hype-2016-09-19.list") #http://hia.cjdns.ca/watchlist/c/walk.peers.20160919
#store = makeStoreGeneratedGraph("fc00-2017-08-12.txt")
if store: runTest(store)
#rootNodeASTest("skitter", "output-treesim-skitter", None, 0, 1)
#scalingTest(1, "graphs-20") # First argument 1 to only test 1 root per graph
#scalingTest(1, "graphs-21") # First argument 1 to only test 1 root per graph
#scalingTest(1, "graphs-22") # First argument 1 to only test 1 root per graph
#scalingTest(1, "graphs-23") # First argument 1 to only test 1 root per graph
if not store:
import sys
args = sys.argv
if len(args) == 2:
job_number = int(sys.argv[1])
#rootNodeASTest("fc00-2017-08-12.txt", "fc00", None, job_number)
#rootNodeASTest("skitter", "out-skitter", None, job_number)
rootNodeASTest("walk-1517414401.txt.map", "out-walk", None, job_number)
else:
print "Usage: {} job_number".format(args[0])
print "job_number = which job set to run on this node (1-indexed)"

View File

@ -412,10 +412,10 @@ func main() {
}
fmt.Println("Test")
Util_testAddrIDMask()
idxstore := makeStoreSquareGrid(4)
//idxstore := makeStoreSquareGrid(4)
//idxstore := makeStoreStar(256)
//idxstore := loadGraph("misc/sim/hype-2016-09-19.list")
//idxstore := loadGraph("misc/sim/fc00-2017-08-12.txt")
idxstore := loadGraph("misc/sim/fc00-2017-08-12.txt")
//idxstore := loadGraph("skitter")
kstore := getKeyedStore(idxstore)
/*

View File

@ -1,35 +0,0 @@
#!/usr/bin/env python2
def main():
import sys
args = sys.argv
if len(args) != 2:
print "Usage:", args[0], "path/to/walk.txt"
return
import glob
files = glob.glob(args[1])
if len(files) == 0:
print "File not found:", args[1]
return
for inFile in files:
with open(inFile, 'r') as f: lines = f.readlines()
out = []
nodes = dict()
for line in lines:
words = line.strip().strip('[').strip(']').split(',')
if len(words) < 5: continue
if words[0].strip('"') != "link": continue
first, second = words[3], words[4]
if first not in nodes: nodes[first] = len(nodes)
if second not in nodes: nodes[second] = len(nodes)
for line in lines:
words = line.strip().strip('[').strip(']').split(',')
if len(words) < 5: continue
if words[0].strip('"') != "link": continue
first, second = nodes[words[3]], nodes[words[4]]
out.append("{0} {1}".format(first, second))
with open(inFile+".map", "w") as f: f.write("\n".join(out))
# End loop over files
# End main
if __name__ == "__main__": main()

View File

@ -1,22 +0,0 @@
package main
import "fmt"
import "time"
import "sync/atomic"
import "runtime"
func main() {
var ops uint64 = 0
for i := 0; i < 4; i++ {
go func() {
for {
atomic.AddUint64(&ops, 1)
runtime.Gosched()
}
}()
}
time.Sleep(1 * time.Second)
opsFinal := atomic.LoadUint64(&ops)
fmt.Println("ops:", opsFinal)
}

View File

@ -1,53 +0,0 @@
package main
import "fmt"
import "net"
import "time"
func main() {
addr, err := net.ResolveTCPAddr("tcp", "[::1]:9001")
if err != nil {
panic(err)
}
listener, err := net.ListenTCP("tcp", addr)
if err != nil {
panic(err)
}
defer listener.Close()
packetSize := 65535
numPackets := 65535
go func() {
send, err := net.DialTCP("tcp", nil, addr)
if err != nil {
panic(err)
}
defer send.Close()
msg := make([]byte, packetSize)
for idx := 0; idx < numPackets; idx++ {
send.Write(msg)
}
}()
start := time.Now()
//msg := make([]byte, 1280)
sock, err := listener.AcceptTCP()
if err != nil {
panic(err)
}
defer sock.Close()
read := 0
buf := make([]byte, packetSize)
for {
n, err := sock.Read(buf)
read += n
if err != nil {
break
}
}
timed := time.Since(start)
fmt.Printf("%f packets per second\n", float64(numPackets)/timed.Seconds())
fmt.Printf("%f bits/sec\n", 8*float64(read)/timed.Seconds())
}

View File

@ -1,36 +0,0 @@
package main
import "time"
import "fmt"
import "sync"
func main() {
fmt.Println("Testing speed of recv+send loop")
const count = 10000000
c := make(chan []byte, 1)
c <- []byte{}
var wg sync.WaitGroup
worker := func() {
for idx := 0; idx < count; idx++ {
p := <-c
select {
case c <- p:
default:
}
}
wg.Done()
}
nIter := 0
start := time.Now()
for idx := 0; idx < 1; idx++ {
go worker()
nIter += count
wg.Add(1)
}
wg.Wait()
stop := time.Now()
timed := stop.Sub(start)
fmt.Printf("%d iterations in %s\n", nIter, timed)
fmt.Printf("%f iterations per second\n", float64(nIter)/timed.Seconds())
fmt.Printf("%s per iteration\n", timed/time.Duration(nIter))
}

View File

@ -1,56 +0,0 @@
package main
import "bytes"
import "encoding/gob"
import "time"
import "fmt"
type testStruct struct {
First uint64
Second float64
Third []byte
}
func testFunc(tickerDuration time.Duration) {
chn := make(chan []byte)
ticker := time.NewTicker(tickerDuration)
defer ticker.Stop()
send := testStruct{First: 1, Second: 2, Third: []byte{3, 4, 5}}
buf := bytes.NewBuffer(nil)
enc := gob.NewEncoder(buf)
dec := gob.NewDecoder(buf)
sendCall := func() {
err := enc.EncodeValue(&send)
if err != nil {
panic(err)
}
bs := make([]byte, buf.Len())
buf.Read(bs)
fmt.Println("send:", bs)
go func() { chn <- bs }()
}
recvCall := func(bs []byte) {
buf.Write(bs)
recv := testStruct{}
err := dec.DecodeValue(&recv)
fmt.Println("recv:", bs)
if err != nil {
panic(err)
}
}
for {
select {
case bs := <-chn:
recvCall(bs)
case <-ticker.C:
sendCall()
}
}
}
func main() {
go testFunc(100 * time.Millisecond) // Does not crash
time.Sleep(time.Second)
go testFunc(time.Nanosecond) // Does crash
time.Sleep(time.Second)
}

View File

@ -1,22 +0,0 @@
package main
import "sync"
import "time"
import "fmt"
func main() {
const reqs = 1000000
var wg sync.WaitGroup
start := time.Now()
for idx := 0; idx < reqs; idx++ {
wg.Add(1)
go func() { wg.Done() }()
}
wg.Wait()
stop := time.Now()
timed := stop.Sub(start)
fmt.Printf("%d goroutines in %s (%f per second)\n",
reqs,
timed,
reqs/timed.Seconds())
}

View File

@ -1,57 +0,0 @@
package main
import "fmt"
import "net"
import "time"
// TODO look into netmap + libpcap to bypass the kernel as much as possible
func basic_test() {
// TODO need a way to look up who our link-local neighbors are for each iface!
//addr, err := net.ResolveUDPAddr("udp", "[ff02::1%veth0]:9001")
addr, err := net.ResolveUDPAddr("udp", "[ff02::1]:9001")
if err != nil {
panic(err)
}
sock, err := net.ListenMulticastUDP("udp", nil, addr)
if err != nil {
panic(err)
}
defer sock.Close()
go func() {
saddr, err := net.ResolveUDPAddr("udp", "[::]:0")
if err != nil {
panic(err)
}
send, err := net.ListenUDP("udp", saddr)
if err != nil {
panic(err)
}
defer send.Close()
msg := make([]byte, 1280)
for {
//fmt.Println("Sending...")
send.WriteTo(msg, addr)
}
}()
numPackets := 1000
start := time.Now()
msg := make([]byte, 2000)
for i := 0; i < numPackets; i++ {
//fmt.Println("Reading:", i)
sock.ReadFromUDP(msg)
}
timed := time.Since(start)
fmt.Printf("%f packets per second\n", float64(numPackets)/timed.Seconds())
}
func main() {
basic_test()
}

View File

@ -1,92 +0,0 @@
package main
import "fmt"
import "net"
import "time"
// TODO look into netmap + libpcap to bypass the kernel as much as possible
func basic_test() {
// TODO need a way to look up who our link-local neighbors are for each iface!
var ip *net.IP
ifaces, err := net.Interfaces()
if err != nil {
panic(err)
}
var zone string
for _, iface := range ifaces {
addrs, err := iface.Addrs()
if err != nil {
panic(err)
}
for _, addr := range addrs {
addrIP, _, _ := net.ParseCIDR(addr.String())
if addrIP.To4() != nil {
continue
} // IPv6 only
if !addrIP.IsLinkLocalUnicast() {
continue
}
zone = iface.Name
ip = &addrIP
}
addrs, err = iface.MulticastAddrs()
if err != nil {
panic(err)
}
for _, addr := range addrs {
fmt.Println(addr.String())
}
}
if ip == nil {
panic("No link-local IPv6 found")
}
fmt.Println("Using address:", *ip)
addr := net.UDPAddr{IP: *ip, Port: 9001, Zone: zone}
saddr := net.UDPAddr{IP: *ip, Port: 9002, Zone: zone}
send, err := net.ListenUDP("udp", &saddr)
defer send.Close()
if err != nil {
panic(err)
}
sock, err := net.ListenUDP("udp", &addr)
defer sock.Close()
if err != nil {
panic(err)
}
const buffSize = 1048576 * 100
send.SetWriteBuffer(buffSize)
sock.SetReadBuffer(buffSize)
sock.SetWriteBuffer(buffSize)
go func() {
msg := make([]byte, 1280)
for {
send.WriteTo(msg, &addr)
}
}()
numPackets := 100000
start := time.Now()
msg := make([]byte, 2000)
for i := 0; i < numPackets; i++ {
_, addr, _ := sock.ReadFrom(msg)
sock.WriteTo(msg, addr)
}
timed := time.Since(start)
fmt.Printf("%f packets per second\n", float64(numPackets)/timed.Seconds())
}
func main() {
basic_test()
}

View File

@ -1,89 +0,0 @@
package main
import "fmt"
//import "net"
import "time"
import "runtime"
import "sync/atomic"
func poolbench() {
nWorkers := runtime.GOMAXPROCS(0)
work := make(chan func(), 1)
workers := make(chan chan<- func(), nWorkers)
makeWorker := func() chan<- func() {
ch := make(chan func())
go func() {
for {
f := <-ch
f()
select {
case workers <- (ch):
default:
return
}
}
}()
return ch
}
getWorker := func() chan<- func() {
select {
case ch := <-workers:
return ch
default:
return makeWorker()
}
}
dispatcher := func() {
for {
w := <-work
ch := getWorker()
ch <- w
}
}
go dispatcher()
var count uint64
const nCounts = 1000000
for idx := 0; idx < nCounts; idx++ {
f := func() { atomic.AddUint64(&count, 1) }
work <- f
}
for atomic.LoadUint64(&count) < nCounts {
}
}
func normalbench() {
var count uint64
const nCounts = 1000000
ch := make(chan struct{}, 1)
ch <- struct{}{}
for idx := 0; idx < nCounts; idx++ {
f := func() { atomic.AddUint64(&count, 1) }
f()
<-ch
ch <- struct{}{}
}
}
func gobench() {
var count uint64
const nCounts = 1000000
for idx := 0; idx < nCounts; idx++ {
f := func() { atomic.AddUint64(&count, 1) }
go f()
}
for atomic.LoadUint64(&count) < nCounts {
}
}
func main() {
start := time.Now()
poolbench()
fmt.Println(time.Since(start))
start = time.Now()
normalbench()
fmt.Println(time.Since(start))
start = time.Now()
gobench()
fmt.Println(time.Since(start))
}

View File

@ -1,95 +0,0 @@
package main
import (
"bytes"
"crypto/rand"
"crypto/rsa"
"crypto/tls"
"crypto/x509"
"encoding/pem"
"fmt"
quic "github.com/lucas-clemente/quic-go"
"math/big"
"sync"
"time"
)
const addr = "[::1]:9001"
func main() {
go run_server()
run_client()
}
func run_server() {
listener, err := quic.ListenAddr(addr, generateTLSConfig(), nil)
if err != nil {
panic(err)
}
ses, err := listener.Accept()
if err != nil {
panic(err)
}
for {
stream, err := ses.AcceptStream()
if err != nil {
panic(err)
}
go func() {
defer stream.Close()
bs := bytes.Buffer{}
_, err := bs.ReadFrom(stream)
if err != nil {
panic(err)
} //<-- TooManyOpenStreams
}()
}
}
func run_client() {
msgSize := 1048576
msgCount := 128
ses, err := quic.DialAddr(addr, &tls.Config{InsecureSkipVerify: true}, nil)
if err != nil {
panic(err)
}
bs := make([]byte, msgSize)
wg := sync.WaitGroup{}
start := time.Now()
for idx := 0; idx < msgCount; idx++ {
wg.Add(1)
go func() {
defer wg.Done()
stream, err := ses.OpenStreamSync()
if err != nil {
panic(err)
}
defer stream.Close()
stream.Write(bs)
}() // "go" this later
}
wg.Wait()
timed := time.Since(start)
fmt.Println("Client finished", timed, fmt.Sprintf("%f Bits/sec", 8*float64(msgSize*msgCount)/timed.Seconds()))
}
// Setup a bare-bones TLS config for the server
func generateTLSConfig() *tls.Config {
key, err := rsa.GenerateKey(rand.Reader, 1024)
if err != nil {
panic(err)
}
template := x509.Certificate{SerialNumber: big.NewInt(1)}
certDER, err := x509.CreateCertificate(rand.Reader, &template, &template, &key.PublicKey, key)
if err != nil {
panic(err)
}
keyPEM := pem.EncodeToMemory(&pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(key)})
certPEM := pem.EncodeToMemory(&pem.Block{Type: "CERTIFICATE", Bytes: certDER})
tlsCert, err := tls.X509KeyPair(certPEM, keyPEM)
if err != nil {
panic(err)
}
return &tls.Config{Certificates: []tls.Certificate{tlsCert}}
}

View File

@ -1,74 +0,0 @@
package main
import "fmt"
import "net"
import "time"
import "flag"
import "os"
import "runtime/pprof"
// TODO look into netmap + libpcap to bypass the kernel as much as possible
func basic_test() {
// TODO need a way to look up who our link-local neighbors are for each iface!
addr, err := net.ResolveUDPAddr("udp", "[::1]:9001")
if err != nil {
panic(err)
}
sock, err := net.ListenUDP("udp", addr)
if err != nil {
panic(err)
}
defer sock.Close()
go func() {
send, err := net.DialUDP("udp", nil, addr)
if err != nil {
panic(err)
}
defer send.Close()
msg := make([]byte, 1280)
for {
send.Write(msg)
}
}()
numPackets := 1000000
start := time.Now()
msg := make([]byte, 2000)
for i := 0; i < numPackets; i++ {
sock.ReadFrom(msg)
}
timed := time.Since(start)
fmt.Printf("%f packets per second\n", float64(numPackets)/timed.Seconds())
}
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
var memprofile = flag.String("memprofile", "", "write memory profile to this file")
func main() {
flag.Parse()
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
panic(fmt.Sprintf("could not create CPU profile: ", err))
}
if err := pprof.StartCPUProfile(f); err != nil {
panic(fmt.Sprintf("could not start CPU profile: ", err))
}
defer pprof.StopCPUProfile()
}
if *memprofile != "" {
f, err := os.Create(*memprofile)
if err != nil {
panic(fmt.Sprintf("could not create memory profile: ", err))
}
defer func() { pprof.WriteHeapProfile(f); f.Close() }()
}
basic_test()
}

View File

@ -1,84 +0,0 @@
package main
import "fmt"
import "net"
import "time"
import "flag"
import "os"
import "runtime/pprof"
// TODO look into netmap + libpcap to bypass the kernel as much as possible
func basic_test() {
// TODO need a way to look up who our link-local neighbors are for each iface!
addr, err := net.ResolveUDPAddr("udp", "[::1]:9001")
if err != nil {
panic(err)
}
sock, err := net.ListenUDP("udp", addr)
if err != nil {
panic(err)
}
defer sock.Close()
go func() {
send, err := net.DialUDP("udp", nil, addr)
if err != nil {
panic(err)
}
defer send.Close()
msg := make([]byte, 1280)
bss := make(net.Buffers, 0, 1024)
for {
for len(bss) < 1024 {
bss = append(bss, msg)
}
bss.WriteTo(send)
//bss = bss[:0]
//send.Write(msg)
}
}()
numPackets := 1000
start := time.Now()
msg := make([]byte, 2000)
for i := 0; i < numPackets; i++ {
n, err := sock.Read(msg)
if err != nil {
panic(err)
}
fmt.Println(n)
}
timed := time.Since(start)
fmt.Printf("%f packets per second\n", float64(numPackets)/timed.Seconds())
}
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
var memprofile = flag.String("memprofile", "", "write memory profile to this file")
func main() {
flag.Parse()
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
panic(fmt.Sprintf("could not create CPU profile: ", err))
}
if err := pprof.StartCPUProfile(f); err != nil {
panic(fmt.Sprintf("could not start CPU profile: ", err))
}
defer pprof.StopCPUProfile()
}
if *memprofile != "" {
f, err := os.Create(*memprofile)
if err != nil {
panic(fmt.Sprintf("could not create memory profile: ", err))
}
defer func() { pprof.WriteHeapProfile(f); f.Close() }()
}
basic_test()
}

View File

@ -1,116 +0,0 @@
package main
import "flag"
import "fmt"
import "net"
import "os"
import "runtime/pprof"
import "time"
// TODO look into netmap + libpcap to bypass the kernel as much as possible
func basic_test() {
// TODO need a way to look up who our link-local neighbors are for each iface!
var ip *net.IP
ifaces, err := net.Interfaces()
if err != nil {
panic(err)
}
var zone string
for _, iface := range ifaces {
addrs, err := iface.Addrs()
if err != nil {
panic(err)
}
for _, addr := range addrs {
addrIP, _, _ := net.ParseCIDR(addr.String())
if addrIP.To4() != nil {
continue
} // IPv6 only
if !addrIP.IsLinkLocalUnicast() {
continue
}
fmt.Println(iface.Name, addrIP)
zone = iface.Name
ip = &addrIP
}
if ip != nil {
break
}
/*
addrs, err = iface.MulticastAddrs()
if err != nil { panic(err) }
for _, addr := range addrs {
fmt.Println(addr.String())
}
*/
}
if ip == nil {
panic("No link-local IPv6 found")
}
fmt.Println("Using address:", *ip)
addr := net.UDPAddr{IP: *ip, Port: 9001, Zone: zone}
laddr, err := net.ResolveUDPAddr("udp", "[::]:9001")
if err != nil {
panic(err)
}
sock, err := net.ListenUDP("udp", laddr)
if err != nil {
panic(err)
}
defer sock.Close()
go func() {
send, err := net.DialUDP("udp", nil, &addr)
//send, err := net.ListenUDP("udp", nil)
if err != nil {
panic(err)
}
defer send.Close()
msg := make([]byte, 1280)
for {
send.Write(msg)
//send.WriteToUDP(msg, &addr)
}
}()
numPackets := 1000000
start := time.Now()
msg := make([]byte, 2000)
for i := 0; i < numPackets; i++ {
sock.ReadFromUDP(msg)
}
timed := time.Since(start)
fmt.Printf("%f packets per second\n", float64(numPackets)/timed.Seconds())
}
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
var memprofile = flag.String("memprofile", "", "write memory profile to this file")
func main() {
flag.Parse()
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
panic(fmt.Sprintf("could not create CPU profile: ", err))
}
if err := pprof.StartCPUProfile(f); err != nil {
panic(fmt.Sprintf("could not start CPU profile: ", err))
}
defer pprof.StopCPUProfile()
}
if *memprofile != "" {
f, err := os.Create(*memprofile)
if err != nil {
panic(fmt.Sprintf("could not create memory profile: ", err))
}
defer func() { pprof.WriteHeapProfile(f); f.Close() }()
}
basic_test()
}

View File

@ -1,103 +0,0 @@
package main
import "fmt"
import "net"
import "time"
import "flag"
import "os"
import "runtime/pprof"
// TODO look into netmap + libpcap to bypass the kernel as much as possible?
const buffSize = 32
func basic_test() {
// TODO need a way to look up who our link-local neighbors are for each iface!
addr, err := net.ResolveTCPAddr("tcp", "[::1]:9001")
if err != nil {
panic(err)
}
listener, err := net.ListenTCP("tcp", addr)
if err != nil {
panic(err)
}
defer listener.Close()
go func() {
send, err := net.DialTCP("tcp", nil, addr)
if err != nil {
panic(err)
}
defer send.Close()
msg := make([]byte, 1280)
bss := make(net.Buffers, 0, 1024)
for {
for len(bss) < 1 { //buffSize {
bss = append(bss, msg)
}
bss := net.Buffers{[]byte{0, 1, 2, 3}, []byte{0, 1}, msg}
bss.WriteTo(send)
//send.Write(msg)
}
}()
numPackets := 1000000
start := time.Now()
//msg := make([]byte, 1280)
sock, err := listener.AcceptTCP()
if err != nil {
panic(err)
}
defer sock.Close()
for i := 0; i < numPackets; i++ {
msg := make([]byte, 1280*buffSize)
n, err := sock.Read(msg)
if err != nil {
panic(err)
}
msg = msg[:n]
for len(msg) > 1286 {
// handle message
i++
msg = msg[1286:]
}
// handle remaining fragment of message
//fmt.Println(n)
}
timed := time.Since(start)
fmt.Printf("%f packets per second\n", float64(numPackets)/timed.Seconds())
_ = func(in chan<- int) {
close(in)
}
}
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
var memprofile = flag.String("memprofile", "", "write memory profile to this file")
func main() {
flag.Parse()
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
panic(fmt.Sprintf("could not create CPU profile: ", err))
}
if err := pprof.StartCPUProfile(f); err != nil {
panic(fmt.Sprintf("could not start CPU profile: ", err))
}
defer pprof.StopCPUProfile()
}
if *memprofile != "" {
f, err := os.Create(*memprofile)
if err != nil {
panic(fmt.Sprintf("could not create memory profile: ", err))
}
defer func() { pprof.WriteHeapProfile(f); f.Close() }()
}
basic_test()
}

View File

@ -1,77 +0,0 @@
package main
import "fmt"
import "net"
import "time"
import "flag"
import "os"
import "runtime/pprof"
// TODO look into netmap + libpcap to bypass the kernel as much as possible
func basic_test() {
// TODO need a way to look up who our link-local neighbors are for each iface!
addr, err := net.ResolveUDPAddr("udp", "[::1]:0")
if err != nil {
panic(err)
}
sock, err := net.ListenUDP("udp", addr)
if err != nil {
panic(err)
}
defer sock.Close()
go func() {
raddr := sock.LocalAddr().(*net.UDPAddr)
send, err := net.DialUDP("udp", nil, raddr)
//send, err := net.ListenUDP("udp", addr)
if err != nil {
panic(err)
}
defer send.Close()
msg := make([]byte, 1280)
for {
send.Write(msg)
//send.WriteToUDP(msg, raddr)
}
}()
numPackets := 1000000
start := time.Now()
msg := make([]byte, 2000)
for i := 0; i < numPackets; i++ {
sock.ReadFromUDP(msg)
}
timed := time.Since(start)
fmt.Printf("%f packets per second\n", float64(numPackets)/timed.Seconds())
}
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
var memprofile = flag.String("memprofile", "", "write memory profile to this file")
func main() {
flag.Parse()
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
panic(fmt.Sprintf("could not create CPU profile: ", err))
}
if err := pprof.StartCPUProfile(f); err != nil {
panic(fmt.Sprintf("could not start CPU profile: ", err))
}
defer pprof.StopCPUProfile()
}
if *memprofile != "" {
f, err := os.Create(*memprofile)
if err != nil {
panic(fmt.Sprintf("could not create memory profile: ", err))
}
defer func() { pprof.WriteHeapProfile(f); f.Close() }()
}
basic_test()
}

View File

@ -1,79 +0,0 @@
package main
import "fmt"
import "net"
import "time"
import "flag"
import "os"
import "runtime/pprof"
// TODO look into netmap + libpcap to bypass the kernel as much as possible
func basic_test() {
// TODO need a way to look up who our link-local neighbors are for each iface!
saddr, err := net.ResolveUDPAddr("udp", "[::1]:9001")
if err != nil {
panic(err)
}
raddr, err := net.ResolveUDPAddr("udp", "[::1]:9002")
if err != nil {
panic(err)
}
send, err := net.DialUDP("udp", saddr, raddr)
if err != nil {
panic(err)
}
defer send.Close()
recv, err := net.DialUDP("udp", raddr, saddr)
if err != nil {
panic(err)
}
defer recv.Close()
go func() {
msg := make([]byte, 1280)
for {
send.Write(msg)
}
}()
numPackets := 1000000
start := time.Now()
msg := make([]byte, 2000)
for i := 0; i < numPackets; i++ {
recv.Read(msg)
}
timed := time.Since(start)
fmt.Printf("%f packets per second\n", float64(numPackets)/timed.Seconds())
}
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
var memprofile = flag.String("memprofile", "", "write memory profile to this file")
func main() {
flag.Parse()
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
panic(fmt.Sprintf("could not create CPU profile: ", err))
}
if err := pprof.StartCPUProfile(f); err != nil {
panic(fmt.Sprintf("could not start CPU profile: ", err))
}
defer pprof.StopCPUProfile()
}
if *memprofile != "" {
f, err := os.Create(*memprofile)
if err != nil {
panic(fmt.Sprintf("could not create memory profile: ", err))
}
defer func() { pprof.WriteHeapProfile(f); f.Close() }()
}
basic_test()
}

View File

@ -1,92 +0,0 @@
package main
import "fmt"
import "net"
import "time"
import "flag"
import "os"
import "runtime/pprof"
// TODO look into netmap + libpcap to bypass the kernel as much as possible
func basic_test() {
// TODO need a way to look up who our link-local neighbors are for each iface!
sock, err := net.ListenUDP("udp", nil)
if err != nil {
panic(err)
}
defer sock.Close()
ch := make(chan []byte, 1)
writer := func() {
raddr := sock.LocalAddr().(*net.UDPAddr)
//send, err := net.ListenUDP("udp", nil)
//if err != nil { panic(err) }
//defer send.Close()
for {
select {
case <-ch:
default:
}
msg := make([]byte, 1280)
sock.WriteToUDP(msg, raddr)
//send.WriteToUDP(msg, raddr)
}
}
go writer()
//go writer()
//go writer()
//go writer()
numPackets := 65536
size := 0
start := time.Now()
success := 0
for i := 0; i < numPackets; i++ {
msg := make([]byte, 2048)
n, _, err := sock.ReadFromUDP(msg)
if err != nil {
panic(err)
}
size += n
select {
case ch <- msg:
success += 1
default:
}
}
timed := time.Since(start)
fmt.Printf("%f packets per second\n", float64(numPackets)/timed.Seconds())
fmt.Printf("%f bits per second\n", 8*float64(size)/timed.Seconds())
fmt.Println("Success:", success, "/", numPackets)
}
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
var memprofile = flag.String("memprofile", "", "write memory profile to this file")
func main() {
flag.Parse()
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
panic(fmt.Sprintf("could not create CPU profile: ", err))
}
if err := pprof.StartCPUProfile(f); err != nil {
panic(fmt.Sprintf("could not start CPU profile: ", err))
}
defer pprof.StopCPUProfile()
}
if *memprofile != "" {
f, err := os.Create(*memprofile)
if err != nil {
panic(fmt.Sprintf("could not create memory profile: ", err))
}
defer func() { pprof.WriteHeapProfile(f); f.Close() }()
}
basic_test()
}

View File

@ -1,124 +0,0 @@
package main
import "fmt"
import "net"
import "time"
import "flag"
import "os"
import "runtime/pprof"
import "golang.org/x/net/ipv6"
// TODO look into netmap + libpcap to bypass the kernel as much as possible
func basic_test() {
// TODO need a way to look up who our link-local neighbors are for each iface!
udpAddr, err := net.ResolveUDPAddr("udp", "127.0.0.1:0")
if err != nil {
panic(err)
}
sock, err := net.ListenUDP("udp", udpAddr)
if err != nil {
panic(err)
}
defer sock.Close()
writer := func() {
raddr := sock.LocalAddr().(*net.UDPAddr)
send, err := net.ListenUDP("udp", nil)
if err != nil {
panic(err)
}
defer send.Close()
conn := ipv6.NewPacketConn(send)
defer conn.Close()
var msgs []ipv6.Message
for idx := 0; idx < 1024; idx++ {
msg := ipv6.Message{Addr: raddr, Buffers: [][]byte{make([]byte, 1280)}}
msgs = append(msgs, msg)
}
for {
/*
var msgs []ipv6.Message
for idx := 0 ; idx < 1024 ; idx++ {
msg := ipv6.Message{Addr: raddr, Buffers: [][]byte{make([]byte, 1280)}}
msgs = append(msgs, msg)
}
*/
conn.WriteBatch(msgs, 0)
}
}
go writer()
//go writer()
//go writer()
//go writer()
numPackets := 65536
size := 0
count := 0
start := time.Now()
/*
conn := ipv6.NewPacketConn(sock)
defer conn.Close()
for ; count < numPackets ; count++ {
msgs := make([]ipv6.Message, 1024)
for _, msg := range msgs {
msg.Buffers = append(msg.Buffers, make([]byte, 2048))
}
n, err := conn.ReadBatch(msgs, 0)
if err != nil { panic(err) }
fmt.Println("DEBUG: n", n)
for _, msg := range msgs[:n] {
fmt.Println("DEBUG: msg", msg)
size += msg.N
//for _, bs := range msg.Buffers {
// size += len(bs)
//}
count++
}
}
//*/
//*
for ; count < numPackets; count++ {
msg := make([]byte, 2048)
n, _, err := sock.ReadFromUDP(msg)
if err != nil {
panic(err)
}
size += n
}
//*/
timed := time.Since(start)
fmt.Printf("%f packets per second\n", float64(count)/timed.Seconds())
fmt.Printf("%f bits/second\n", float64(8*size)/timed.Seconds())
}
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
var memprofile = flag.String("memprofile", "", "write memory profile to this file")
func main() {
flag.Parse()
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
panic(fmt.Sprintf("could not create CPU profile: ", err))
}
if err := pprof.StartCPUProfile(f); err != nil {
panic(fmt.Sprintf("could not start CPU profile: ", err))
}
defer pprof.StopCPUProfile()
}
if *memprofile != "" {
f, err := os.Create(*memprofile)
if err != nil {
panic(fmt.Sprintf("could not create memory profile: ", err))
}
defer func() { pprof.WriteHeapProfile(f); f.Close() }()
}
basic_test()
}

View File

@ -1,105 +0,0 @@
package main
import "fmt"
import "net"
import "time"
import "flag"
import "os"
import "runtime/pprof"
// TODO look into netmap + libpcap to bypass the kernel as much as possible?
const buffSize = 32
func basic_test() {
// TODO need a way to look up who our link-local neighbors are for each iface!
addr, err := net.ResolveTCPAddr("tcp", "[::1]:9001")
if err != nil {
panic(err)
}
listener, err := net.ListenTCP("tcp", addr)
if err != nil {
panic(err)
}
defer listener.Close()
go func() {
send, err := net.DialTCP("tcp", nil, addr)
if err != nil {
panic(err)
}
defer send.Close()
msg := make([]byte, 1280)
bss := make(net.Buffers, 0, 1024)
count := 0
for {
time.Sleep(100 * time.Millisecond)
for len(bss) < count {
bss = append(bss, msg)
}
bss.WriteTo(send)
count++
//send.Write(msg)
}
}()
numPackets := 1000000
start := time.Now()
//msg := make([]byte, 1280)
sock, err := listener.AcceptTCP()
if err != nil {
panic(err)
}
defer sock.Close()
for {
msg := make([]byte, 1280*buffSize)
n, err := sock.Read(msg)
if err != nil {
panic(err)
}
msg = msg[:n]
fmt.Println("Read:", n)
for len(msg) > 1280 {
// handle message
msg = msg[1280:]
}
// handle remaining fragment of message
//fmt.Println(n)
}
timed := time.Since(start)
fmt.Printf("%f packets per second\n", float64(numPackets)/timed.Seconds())
_ = func(in chan<- int) {
close(in)
}
}
var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
var memprofile = flag.String("memprofile", "", "write memory profile to this file")
func main() {
flag.Parse()
if *cpuprofile != "" {
f, err := os.Create(*cpuprofile)
if err != nil {
panic(fmt.Sprintf("could not create CPU profile: ", err))
}
if err := pprof.StartCPUProfile(f); err != nil {
panic(fmt.Sprintf("could not start CPU profile: ", err))
}
defer pprof.StopCPUProfile()
}
if *memprofile != "" {
f, err := os.Create(*memprofile)
if err != nil {
panic(fmt.Sprintf("could not create memory profile: ", err))
}
defer func() { pprof.WriteHeapProfile(f); f.Close() }()
}
basic_test()
}

View File

@ -1,83 +0,0 @@
package main
import (
"fmt"
"log"
"net"
"os/exec"
"time"
"github.com/yggdrasil-network/water"
)
const mtu = 65535
func setup_dev() *water.Interface {
ifce, err := water.New(water.Config{
DeviceType: water.TUN,
})
if err != nil {
panic(err)
}
return ifce
}
func setup_dev1() *water.Interface {
ifce := setup_dev()
cmd := exec.Command("ip", "-f", "inet6",
"addr", "add", "fc00::2/8",
"dev", ifce.Name())
out, err := cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
panic("Failed to assign address")
}
cmd = exec.Command("ip", "link", "set",
"dev", ifce.Name(),
"mtu", fmt.Sprintf("%d", mtu),
"up")
out, err = cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
panic("Failed to bring up interface")
}
return ifce
}
func connect(ifce *water.Interface) {
conn, err := net.DialTimeout("tcp", "192.168.2.2:9001", time.Second)
if err != nil {
panic(err)
}
sock := conn.(*net.TCPConn)
// TODO go a worker to move packets to/from the tun
}
func bench() {
}
func main() {
ifce := setup_dev1()
connect(ifce)
bench()
fmt.Println("Done?")
return
ifce, err := water.New(water.Config{
DeviceType: water.TUN,
})
if err != nil {
panic(err)
}
log.Printf("Interface Name: %s\n", ifce.Name())
packet := make([]byte, 2000)
for {
n, err := ifce.Read(packet)
if err != nil {
panic(err)
log.Fatal(err)
}
log.Printf("Packet Received: % x\n", packet[:n])
}
}

View File

@ -1,126 +0,0 @@
package main
import (
"fmt"
"log"
"net"
"os/exec"
"github.com/yggdrasil-network/water"
)
const mtu = 65535
const netnsName = "tunbenchns"
func setup_dev() *water.Interface {
ifce, err := water.New(water.Config{
DeviceType: water.TUN,
})
if err != nil {
panic(err)
}
return ifce
}
func setup_dev1() *water.Interface {
ifce := setup_dev()
cmd := exec.Command("ip", "-f", "inet6",
"addr", "add", "fc00::1/8",
"dev", ifce.Name())
out, err := cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
fmt.Println(string(err))
panic("Failed to assign address")
}
cmd = exec.Command("ip", "link", "set",
"dev", tun.name,
"mtu", fmt.Sprintf("%d", mtu),
"up")
out, err = cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
panic("Failed to bring up interface")
}
return ifce
}
func addNS(name string) {
cmd := exec.COmmand("ip", "netns", "add", name)
out, err := cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
panic("Failed to setup netns")
}
}
func delNS(name string) {
cmd := exec.COmmand("ip", "netns", "delete", name)
out, err := cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
panic("Failed to setup netns")
}
}
func doInNetNS(comm ...string) *exec.Cmd {
return exec.Command("ip", "netns", "exec", netnsName, comm...)
}
func setup_dev2() *water.Interface {
ifce := setup_dev()
addNS(netnsName)
cmd := exec.Command("ip", "link", "set", ifce.Name(), "netns", netnsName)
out, err := cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
panic("Failed to move tun to netns")
}
cmd = doInNetNS("ip", "-f", "inet6",
"addr", "add", "fc00::2/8",
"dev", ifce.Name())
out, err = cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
panic("Failed to assign address")
}
cmd = doInNetNS("ip", "link", "set",
"dev", tun.name,
"mtu", fmt.Sprintf("%d", mtu),
"up")
out, err := cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
fmt.Println(string(err))
panic("Failed to bring up interface")
}
return ifce
}
func connect() {
}
func bench() {
}
func main() {
ifce, err := water.New(water.Config{
DeviceType: water.TUN,
})
if err != nil {
panic(err)
}
log.Printf("Interface Name: %s\n", ifce.Name())
packet := make([]byte, 2000)
for {
n, err := ifce.Read(packet)
if err != nil {
panic(err)
log.Fatal(err)
}
log.Printf("Packet Received: % x\n", packet[:n])
}
}

View File

@ -1,128 +0,0 @@
package main
import (
"fmt"
"log"
"net"
"os/exec"
"github.com/yggdrasil-network/water"
)
const mtu = 65535
const netnsName = "tunbenchns"
func setup_dev() *water.Interface {
ifce, err := water.New(water.Config{
DeviceType: water.TUN,
})
if err != nil {
panic(err)
}
return ifce
}
func setup_dev1() *water.Interface {
ifce := setup_dev()
cmd := exec.Command("ip", "-f", "inet6",
"addr", "add", "fc00::1/8",
"dev", ifce.Name())
out, err := cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
fmt.Println(string(err))
panic("Failed to assign address")
}
cmd = exec.Command("ip", "link", "set",
"dev", tun.name,
"mtu", fmt.Sprintf("%d", mtu),
"up")
out, err = cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
panic("Failed to bring up interface")
}
return ifce
}
func addNS(name string) {
cmd := exec.COmmand("ip", "netns", "add", name)
out, err := cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
panic("Failed to setup netns")
}
}
func delNS(name string) {
cmd := exec.COmmand("ip", "netns", "delete", name)
out, err := cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
panic("Failed to setup netns")
}
}
func doInNetNS(comm ...string) *exec.Cmd {
return exec.Command("ip", "netns", "exec", netnsName, comm...)
}
func setup_dev2() *water.Interface {
ifce := setup_dev()
addNS(netnsName)
cmd := exec.Command("ip", "link", "set", ifce.Name(), "netns", netnsName)
out, err := cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
panic("Failed to move tun to netns")
}
cmd = exec.Command(
"ip", "-f", "inet6",
"addr", "add", "fc00::2/8",
"dev", ifce.Name())
out, err := cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
panic("Failed to assign address")
}
cmd = exec.Command(
"ip", "link", "set",
"dev", tun.name,
"mtu", fmt.Sprintf("%d", mtu),
"up")
out, err := cmd.CombinedOutput()
if err != nil {
fmt.Println(string(out))
fmt.Println(string(err))
panic("Failed to bring up interface")
}
return ifce
}
func connect() {
}
func bench() {
}
func main() {
ifce, err := water.New(water.Config{
DeviceType: water.TUN,
})
if err != nil {
panic(err)
}
log.Printf("Interface Name: %s\n", ifce.Name())
packet := make([]byte, 2000)
for {
n, err := ifce.Read(packet)
if err != nil {
panic(err)
log.Fatal(err)
}
log.Printf("Packet Received: % x\n", packet[:n])
}
}

View File

@ -1,45 +0,0 @@
package main
import (
"log"
"net"
"sync"
"github.com/FlexibleBroadband/tun-go"
)
// first start server tun server.
func main() {
wg := sync.WaitGroup{}
// local tun interface read and write channel.
rCh := make(chan []byte, 1024)
// read from local tun interface channel, and write into remote udp channel.
wg.Add(1)
go func() {
wg.Done()
for {
data := <-rCh
// if data[0]&0xf0 == 0x40
// write into udp conn.
log.Println("tun->conn:", len(data))
log.Println("read!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
log.Println("src:", net.IP(data[8:24]), "dst:", net.IP(data[24:40]))
}
}()
address := net.ParseIP("fc00::1")
tuntap, err := tun.OpenTun(address)
if err != nil {
panic(err)
}
defer tuntap.Close()
// read data from tun into rCh channel.
wg.Add(1)
go func() {
if err := tuntap.Read(rCh); err != nil {
panic(err)
}
wg.Done()
}()
wg.Wait()
}

View File

@ -1,40 +0,0 @@
package main
import "wire"
import "fmt"
import "time"
func main() {
for idx := 0; idx < 64; idx++ {
num := uint64(1) << uint(idx)
encoded := make([]byte, 10)
length := wire.Encode_uint64(num, encoded)
decoded, _ := wire.Decode_uint64(encoded[:length])
if decoded != num {
panic(fmt.Sprintf("%d != %d", decoded, num))
}
}
const count = 1000000
start := time.Now()
encoded := make([]byte, 10)
//num := ^uint64(0) // Longest possible value for full uint64 range
num := ^uint64(0) >> 1 // Largest positive int64 (real use case)
//num := uint64(0) // Shortest possible value, most will be of this length
length := wire.Encode_uint64(num, encoded)
for idx := 0; idx < count; idx++ {
wire.Encode_uint64(num, encoded)
}
timed := time.Since(start)
fmt.Println("Ops:", count/timed.Seconds())
fmt.Println("Time:", timed.Nanoseconds()/count)
encoded = encoded[:length]
start = time.Now()
for idx := 0; idx < count; idx++ {
wire.Decode_uint64(encoded)
}
timed = time.Since(start)
fmt.Println("Ops:", count/timed.Seconds())
fmt.Println("Time:", timed.Nanoseconds()/count)
}